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12. Control System 

12.1 Executive Summary  
SESAME control systems will utilize and use Experimental Physics and Industrial Control 

System (EPICS) toolkit for both Machine and beamlines; it is a distributed hardware and software 
control system (standard model) that requires no central device or software at any layer. For the 
development of graphical user applications, the Java Abeans package will be used, which is an 
application framework optimized for accelerator control systems. 

When developing the control system (CS) of SESAME we try to consistently follow our 
vision: To produce a user friendly CS, where “user” stands for a physicist that operates the 
accelerator and not a computer expert. Therefore, the main characteristics must be that the CS is 
easy to maintain and that it allows non-experts to easily build powerful applications. To make such 
user-friendly behavior possible, a clean and consistent design is of paramount importance. 

On the other hand, the budget for the whole machine must be kept tight and an optimum 
price/performance solution for the CS has to be found. For this reason one should incorporate as 
many standard and reliable commercial or open-source products as possible and not to unnecessary 
reinvent anything. We propose to use the same approach as for the SLS and ANKA control 
systems, which proved to be very successful both in technical performance, time-to market, simple 
installation and upgrade and management issues. It is possible, by adhering to the same design 
guidelines, to re-use the I/O boards of SLS, the core software EPICS and the applications of 
ANKA, which results in significant savings. 

With the current state of technology, one should use PCs on the client side running either 
Windows or Linux operating systems. The software running on these PCs is best written in Java to 
allow platform independence. The input/output would be handled via VME boards, avoiding the 
need for an extra Fieldbus system. However, these statements will probably change in time and 
therefore should be revised at the implementation phase of the project. Be it any system and 
programming language, it is very important that the installation of the whole CS is very similar to 
an installation of a commercial product – using an automatic installation procedure for the software 
and plug-and-play for the hardware. 

12.2 Introduction 
In comparison with other light sources, SESAME can be considered a small to medium sized 

installation. Its control system can therefore reflect a reasonably simple and efficient design, as has 
been applied to similar light sources such as ANKA, BESSY, SLS, etc. Even though all those light 
sources use somewhat different control system technologies, they all share the commonly accepted 
three-layer architecture: 

• Device Input/Output Layer, which is the only one that connects to the actual hardware  
• Process Control Layer, where processes distribute controlled device data to/from many 

clients simultaneously 
• Visualization Layer, with graphical user interfaces and similar applications 

It is important to realize that the technology itself matters very little. The proof of this 
statement is the simple fact that all the above-mentioned light sources work very reliably and that 
their control system adds very little to the machine downtime. What is much more important is that 
detailed design and the implementation is made in a consistent way. This can only be achieved if all 
participants in the project, not just the control experts, adhere to well defined standard interfaces, 
both in terms of electrical connections and, probably even more importantly, in terms of software 
device interfaces. 
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The SESAME CS side must offer seamless crash recovery, flexibility in small variations of the 
design (e.g. new device types are added within minutes consistently across all layers) and above all 
it must enforce a consistent description of controlled items via standardized pattern interfaces. Such 
features have been implemented often by retrofitting existing set-ups and by highly non-portable 
solutions and spending a lot of resources, while a clean top-down design and the use of a powerful 
relational database could direct the implementation in the right direction with little added cost, just 
at the sake of increased discipline. 

12.3 General Requirements 
The SESAME control system should be reliable enough to provide users with the required 

beam for the scheduled operations with the minimum number of failures and a short time for repair. 
High performance is required to ensure that the response to the operator action is within a certain 
time (in our case 100 ms). Security should be taken into account very carefully in such a way that 
lets every control parameter to be monitored or changed only within the SESAME accelerator 
complex where at the same time has a controlled access from outside. Some information about the 
machine status could be placed at the SESAME home page on the World Wide Web. The control 
system should be easy to use for the machine operator; all the graphical user interfaces (GUI) 
should follow the same format and colors to monitor the signals and buttons. The GUIs should 
somehow let the operator to start/stop the machine very quickly or change the parameters easily. 
Alarms should be monitored and acknowledged in a clear and well-defined manner.  

Hardware should be replaced without interruption to the machine operation whenever 
possible. Regarding software development packages and tools it should be well defined at the 
beginning in order not to end up with using and supporting so many different packages.  

Scope of the control system is from the supported electrical interfaces to the GUIs and all the 
hardware and software in between. These electrical Interfaces (signals) are supported: 

• Analogue I/O (-10 to +10 Volts) 
• Digital I/O (TTL, 0/24 Volts) 
• Motors (DC and Stepper) 
• Serial  
• GPIB 

12.4 Architecture 
Expectations of the final user determine the design of the CS. On one end of the CS he 

requires the physical devices to be added easily and on the other he wants a powerful and easy-to-
use user-interface. In addition it has to be taken into account that specifications are often modified 
during the course of development, usually by the addition of features. All this requirements demand 
a CS that is able to provide a great deal of flexibility. 

Unlimited flexibility, however, results in unacceptably high cost. In order to achieve 
reasonable flexibility at low cost, the SESAME CS design needs a small number of fundamental 
building blocks across the whole control system, both in hardware and software, which are not 
allowed to be altered in any way. The design of the blocks is of course frozen only after careful 
investigation of the available requirements and has to foresee possible future needs. 

In terms of hardware on the client level, our goal is a solid framework of components that can 
easily be assembled into powerful applications. This structure of blocks or, components, 
respectively, allows the programmers to develop the layers of the CS independently of each other. 
The only constraints to the programmer are the interfaces that must be carefully designed in the first 
step of the design process in order to minimize interdependencies between layers, both in code and 
data. These interfaces must define all the possible interactions between layers in a consistent way. 
The result is cleaner code and better equipment, since every participant only has a limited number 
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of things to worry about. If some components later have to be optimized, they can just be rebuilt 
from scratch without affecting the rest of the CS, because the interfaces stay the same. In addition, 
testing, debugging and error correction becomes much easier. 

In the next few subsections we present the design from the technical aspect.  
 
 
OPI: 
PCs running Linux, Windows 
MEDM, Tcl/Tk, EDM  
 
 
Network 
 
 
 
VME I/O controllers: 
OS (vxWorks or RTEMS) 
CPU (Motorola PPC, 680X0) 
 
 
 
 
 
I/O signals: 
(VME, Industry Pack, Serial, 
GPIB) 

Figure 12.1: EPICS architecture 
 

12.4.1 Hardware Layer 
The Front-End (FE) layer—referred to as the Input/Output Controller (IOC)—is built from 

VME crates, CPU boards (Motorola 680X0 and PowerPC families), and I/O boards and runs a real 
time OS. I/O boards support many standard field buses and interfaces like IEEE-488 (GPIB), 
Bitbus, CANbus, RS-232/485, and Ethernet. 

The Back-End (BE) layer consists of PCs running Linux and Windows. These layers (FE and 
BE) are connected via a network layer, which is a media (Ethernet) and a set of repeaters and 
bridges supporting TCP/IP. 

12.4.2 Software Layer 
The software layer adopts ‘client-server’ model. The client layer usually runs on the 

Workstation/PC physical layer and represents the top software layer. The communication between 
server and client is done via channel access (CA), which is EPICS backbone that handles all 
communication via the network; it runs on both the client and the server. The CA server runs on the 
front end CPU and is a unique task on each network node. The IOC runs a real time OS, vxWorks is 
widely used but RTEMS is also highly considered. 
Typical clients are: 

• Operator interface panels, Display managers (MEDM, EDM), StripChart 
• Archiver 
• Alarm Handler  
• Applications 
• System Configuration Database 

Field I/O Field I/O Field I/O Field I/O 
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12.4.3 Applications with Graphical User Interface 
The applications of the visualization layer provide the interaction with the operator of the 

accelerator. They accept commands and display controlled values, either one by one or in groups, 
through tables and charts. Another type of applications are applications that manage whole sets of 
devices at the same time, like generic device tables, ramping alarm table, snapshot, etc. 

To represent the values of the accelerator variables (currents on magnets, status of the vacuum 
pumps, etc.), several graphical user interface (GUI) components will be used (see also Figure 
(12.1)): 

• gauge to display the value of a property 
• slider to manipulate the value of a property 
• status LED display to display the status bits as on the physical panel of the device 
• chart to display the same type of values of different devices along the ring, e.g. vacuum 

profile 
• trend – a chart that displays one or several values as a function of time 

Another component is the “selector”, which enables the user to search for all available devices 
of a given type dynamically at run time and chose one or a group of them. When the choice is 
made, the system automatically takes care of the initialization process and the gauge is immediately 
showing the correct value. An example of such an application is shown in Figure (12.2).  

In order to make the automatic initialization happen, a common framework for the development 
of all applications is needed. It is often neglected that this framework must also provide solutions 
for handling device errors and communication problems that occur. The framework should provide 
an Application Programmer’s Interface (API) that completely hides the network. Ideally it should 
also be platform independent in order to be flexible for future hardware upgrades. Such platform 
independency can be achieved by using interpreted languages whose interpreter is implemented on 
several platforms, e.g. Java, tcl/tk, Python. However, one should not create a maintenance problem 
by allowing several of those languages and GUI-building environments to be used. The libraries of 
the framework map the remote devices and their properties (encapsulate all remote calls from the 
client to a device server of the process control layer), following the same naming rules as defined in 
the process control layer. Beside this, they provide the following functionality:  

• open the connection and perform the function calls on remote objects 
• report and manage all errors / exceptions / timeouts arising from network communication 
• provide handles for asynchronous messages, queue / demultiplex responses 
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Figure 12.2: An example of a power supply control panel, taken from the ANKA control system. This panel was 

created from Java accelerator framework beans (called Abeans) and GUI components in a Java 
visual builder environment without typing a single line of code. The following “ANKA CS standard” 
GUI components can be seen: a) selector, b) gauge, c) slider, d) status LED display, e) ATextPane - a 
pane with time-stamped messages for the user. 

 
We will use the Abeans libraries, which is the only application development framework that 

combines all the above-mentioned features. 

12.4.4 The Databases 
The control system involves three main databases:  

• Configuration database that stores configuration parameters like channelo and device names, 
constants, calibration coefficients, attributes, alarm levels, I/O addresses, etc. 

• Snapshot database that stores the state (i.e. all settings) of the machine 
• Historic database that logs data over long periods of time 

The main idea of the three-tier architecture is that clients don’t access the database directly but 
through the EPICS and database server. 

The static data used by the I/O boards are stored in the configuration database, too. They are 
downloaded to the EPICS server machines with a generic script procedure. Data that are used both 
by the client and EPICS server such as resolution, name, etc. are located only in one place of the 
database to ensure consistency.  

To ensure a consistent configuration database, a version control of the database should be used. 
Ideally it should be the same versioning system as used by the software. The central version of the 
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configuration database is stored on one computer and then the data are copied to all the others in the 
control system using a series of scripts. 

The snapshot database is used and managed through a dedicated application. The data are stored 
using a relational database or just plain text files. 

Long-term history data are stored into a relational database and retrieved off-line through 
dedicated applications. A compromise between the sampling rate, storage time and available disk 
space must be made when the system is set up. 

12.4.5 Machine Physics Applications  
Machine physicists need a set of applications that deal with the physics of the accelerator. 

Some applications must exist already at the start of commissioning like machine function display 
(Figure 12.3) and orbit correction; others are developed if the need occurs: tune optimization, 
instability investigations, etc. As it cannot be predicted in advance, which applications are needed, 
most of them will be written by machine physicists and not the control group. Ideally, the machine 
physicists are given a software package for presenting the real-time state of accelerator transfer line 
in quantities relevant to machine physics. A unique design is the databush of Elettra, which has 
been revamped for ANKA and renamed DataBush. The DataBush connects to the accelerator 
devices, such as power supplies, beam position monitors, info server and then translates these 
objects to magnets and other to machine optics relevant devices and present them as software 
components. In this manner it acts as a bridge between machine physics and machine devices. 
 

 
Figure 12.3: The machine function display made with DataBush. It displays properties calculated in “real-time” 

by the DataBush, which read all relevant data from the control system. 
 

The DataBush is also able to simulate any device and work with it, as it would be a real 
machine device. This feature makes it easier to debug with DataBush and to use it similar to other 
accelerator optics calculating programs (MAD, etc.) but with the flexibility of a programming 
package. 

Since the DataBush is Java package, it is platform independent. Plug-ins and models make it 
possible to fine tune DataBush to needs of particular implementation.  

The DataBush is strongly integrated with CS. The accelerator specific implementation is 
hidden from the physics application into lower levels of the library. An application is 
communicating in this way with the accelerator through a general accelerator interface, not 
knowing/caring about how this communication is realized. Two major benefits come out of this 
architecture  
 



 139

Portability: The architecture of the CS allows Java clients to be portable by wrapping the machine 
specifics in a well-defined interface. Machine physics application can be used on other accelerators 
without changing single line of code, with appropriate modification of CS plugs of course. This 
enables sharing accelerator software among different accelerator, i.e. ANKA and SESAME in our 
case. 

More efficient programming: A physicist can concentrate on machine physics problems. No 
special knowledge of the CS is needed, since all communication with CS is handled by DataBush 
The following features make DataBush a flexible machine physics tool  

• quasi real-time current or magnetic properties transformation  
• quasi real-time linear optics calculation of machine function  
• automation of mostly used machine physics routines 
• representation of the machine with Java beans  
• type and cast safe programming with DataBush beans  
• customization of DataBush operations with pluggable mechanisms  

 
12.5 Subsystems 

Here we introduce a short description for the Timing and Diagnostics sub-systems, as they are 
critical and affect the overall performance of the machine and a brief to beamline controls. 
 
12.5.1 Timing System 

The task of the SESAME timing system is to synchronize the operation of the whole 
accelerator complex and its subsystems together with Beamlines and experiments. The triggering of 
the Microtron, the beam injection to the booster, the ramping of the energy, injection to the storage 
ring and ramping of the energy in the storage ring happen according to the synchronization pulses 
from the timing system. The timing system also provides the capability to inject to specific buckets 
in the storage ring and control the filling pattern. 
 
12.5.1.1 Architecture 

The SESAME timing system is based on the global distribution of timing signals using the so-
called event system. This system is based on the design from the APS (Advanced Photon Source), 
which is redesigned for the SLS (Swiss Light Source). 
 
 
 
 
 
 
 

Figure 12.4: Global Event Distribution 

 
Events are requests for various actions like triggering of the injector or extraction from the 

booster or even start of a software action. Codes are assigned to the events and are stored in the 
RAM of the event generator then it is scanned through at a specified programmable clock rate. The 
events are time multiplexed in a frame and distributed to all the event receivers at a rate of 50 MHz 
(20 ns resolution, 15 ps RMS jitter). The timing system has been integrated fully into the EPICS 
control system software so that timing parameters are available as EPICS channels. All the event 
receivers have a timestamp counter (40 ns precision), which is latched when an event occurs. 
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12.5.2 Diagnostics 
Fine integration of the Diagnostic devices into the control system has great importance for 

operation and commissioning of the machine. Almost all these devices need to be synchronized 
with the beam operation, which is done by the proposed timing system.  
Beam position monitors and current transformers (fast and slow) are the most important diagnostic 
tools and are monitored and controlled by number of ADC modules with 16 bit precision and also 
digital I/O modules.  

Several screen and synchrotron light monitors are/is used to monitor the profile and presence 
of the beam in transfer line and ring, live on a dedicated monitor. All these cameras are 
synchronized with the beam injection and machine operation and connected to a video multiplexer, 
which will be placed in the control room and provides selection of each of the screen monitors at a 
time. Furthermore we will use a very cost effective PCI image grabber installed on a PC in control 
room, which provides us with digitized images and is available over the network for further analysis 
by physicists. One scraper is also used in the transfer line from booster to storage ring. 
 
12.5.3 Beamline Controls 

Beamline control will require many of the same facilities and features as the machine control 
system. It should therefore use the same system hardware and software, but with access to many of 
the features only available locally. Beam lines will require consoles that are tightly integrated with 
the scientific computing facility, as well as being part of the control system. The consoles also 
require good access to external institutes. As beam line configurations are likely to change, it is in 
this area even more necessary to allow easy configuration and reconfiguration of devices. One of 
the most common hardware devices in a beam line are stepper motors and perhaps also DC motors. 
These are used for the primary and secondary slits as well as monochromators, and the movement 
of the experiment. It should be possible to synchronize the movement of these motors, and operate 
them in a continuous as well as incremental manner. This is especially important during scans of 
energy at the beamlines, which is achieved by fine synchronization of the insertion devices with 
beamline components using timing events. 
 
12.6 Control Room 

A central control room will operate the entire machine, operator stations with the same 
facilities provided, in addition to some special purpose instruments like oscilloscope and spectrum 
analyzers. 
 
12.7 Network 

Network will support the control system, data acquisition and offices. It has to ensure a 
reliable and fast data transfer without bottlenecks or jams, based on fast Ethernet technology (100 
Mbit/s). This will cover a wide range of supported VME interfaces, good performance and low cost. 

A file server is needed where a central point of data collection and managing is provided, 
Development and Boot consoles in addition to port servers or serial cards (connect VMEs to hosts) 
are also required. 
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