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Abstract  
In a storage ring the evaluation of the dynamic aperture 

taking into account the vacuum chamber limitation is 
more accurate and may display nonlinearities that could 
not be seen in the conventional absolute dynamic aperture 
calculations. This has been demonstrated in SESAME 
case where taking into account the vacuum chamber 
uncovered the seriousness of a 5th order resonance mainly 
when high order multipoles were introduced to the lattice. 
The destructive effect of the 5th order resonance has been 
avoided by changing the fractional part of the tunes. The 
results are crosschecked using two tracking codes and 
verified using the Frequency Map Analysis technique. 
 

INTRODUCTION 
 

The dynamic aperture is the transverse area in the x-z 
plane (x for horizontal and z for vertical plane) in which 
the particle betatron motion is stable. It is defined by the 
maximum initial phase space amplitudes (x(0), px(0), z(0), 
pz(0)) with which the tracked particle doesn’t get lost for 
enough number of turns with respect to the interesting 
time scale as the damping time for the electrons [1]. It is a 
local lattice parameter where its horizontal and vertical 
dimensions at some longitudinal position s depend on the 
optical functions there. In the linear approximation it is 
transformed using the relation 

zxzxzxzx AssA ,0,0,, /)()( ββ= , with βx, z(s) the s-

dependent beta function, β0 x, z and A0 x, z are beta function 
and dimensions of the dynamic aperture at the calculation 
point s = 0. 

In BETA [2] and TRACY-II [3] tracking codes, used in 
this study, the particle is tracked in different ways. In 
BETA code the particle coordinates are defined by a 
column matrix with the components (x, x/, z, z/, l, δ, 1) 
where x, z the horizontal and vertical transverse positions, 
x/ = dx /ds and z/ = dz /ds are the angles, l and δ are the 
variations in path length and the relative momentum 
deviation of the test particle from the synchronous one, 
whereas the 7th component 1 is used to represent the 
effect of a kick on the trajectory. When dealing with the 
2nd order formalism, the column vector is extended by 
adding the 2nd order components [4]. The particle tracking 
is done using the 1st order and 2nd order transfer matrices 
[4]. In TRACY-II code the particle motion is described by 
the canonical coordinates ( x, px, z,  pz , l, δ ) with x, z the 
horizontal and vertical transverse positions and  px, 

 pz  are 
their horizontal and vertical conjugate momenta. The 

tracking is done using the 2nd order or 4th order symplectic 
integrators where the particle motion is symplectic [5].  

Conventionally, the nonlinear beam dynamics is 
represented by the absolute dynamic aperture calculations 
where a wide excursion space is offered for the particle 
[6]. The oscillating particle is considered unstable when it 
exceeds that space. For more realistic estimation for the 
dynamic aperture, the vacuum chamber should be 
included in the calculations since it defines the realistic 
physical limits to the particle excursion amplitude. In this 
case, a particle passing close to the chamber borders with 
nonlinear motion may get lost at the chamber limitation 
and considered as unstable particle, while it can be 
described as a stable one if it had larger space to oscillate 
in as in the absolute dynamic aperture case. In this sense 
the vacuum chamber may participate in defining the 
“chamber-limited” dynamic aperture [7]. The importance 
of including the vacuum chamber can be seen more 
clearly if the particle nonlinear motion is excited by the 
effect of high order multipoles [8] for example. 

                                                                                                                                                             

THE DYNAMIC APERTURE WITH 
VACUUM CHAMBER 

 
In the nonlinear optimization of SESAME storage ring 

lattice, the vacuum chamber with dimensions x = ±35 mm 
for horizontal half-aperture and z = ±15 mm for the 
vertical one was included in the dynamic aperture 
calculations. The vacuum chamber was introduced in 
TRACY-II as a transverse physical limitation at the 
entrance and exit of each element in the lattice. The 
elements of the lattice are divided into many slides, for 
each the vacuum chamber limitations are introduced. The 
bending magnets and quadrupoles are the most interesting 
ones in this consideration. In BETA code, the vacuum 
chamber was represented by horizontal and vertical 
scrapers placed at the highest values for beta functions βx 
and βz.                                                       

The presented nonlinear calculations are done on an 
Optics with working point (Qx = 7.23, Qz = 5.19) [9] and 
are evaluated by tracking the particle for 1000 turns 
starting from the middle of the Long straight section 
where βx = 12.31 m and βz = 3.13 m. The maximum 
values for βx and βz in this optics are βxmax = 12.807 m in 
the middle of the focusing quadrupoles at the ends of the 
long straight sections and βzmax = 21.35 m in the middle of 
the bending magnets as shown by Fig. 1. The vacuum 
chamber vertical half-aperture, z = 15 mm, in the bending 



 

magnet yields a vertical physical aperture ∆z = 5.74 mm 
(at x = 0) at the calculation point. The presented 
calculations are done for chromaticities corrected to zero 
in both planes. 

 

 
Figure 1: SESAME storage ring optics showing βx (red), 
βz (blue) and dispersion ηx (green). 

 
By introducing the vacuum chamber, signature of the 

nonlinearities became different from the case of absolute 
dynamic aperture as shown by Fig. 2 where the results of 
BETA, which highly agree with TRACY-II results, are 
presented. 

 
 

  
 

Figure 2: (left) The absolute dynamic aperture (blue) 
compared to the vacuum chamber size (red). (right) The 
chamber-limited dynamic aperture. The dashed line 
shows how the chamber-limited dynamic apertures should 
be in case of linear particle motion. 

 
Figure 2(right) show that the chamber-limited dynamic 
aperture is degrading at large x-amplitudes mainly in the 
left side and, moreover, it has two clear vertical cuts at x 
≈ ±21 mm. This indicates a presence of resonances 
(created by the sextupoles) there which make the particle 
motion nonlinear and increase the amplitude of particle 
vertical oscillation to higher than what is allowed by the 
vacuum chamber. Consequently this particle gets lost on 
the upper chamber limitation. In case of no chamber 
limitation, that particle is considered stable by the 
tracking code due to the large oscillation space offered to 
it as can be seen in Fig. 2(left). 
 

Applying High Order Multipoles 

When the dipole high order multipoles, listed in 
Table1, were included into the calculations the size of the 
absolute and chamber-limited dynamic apertures became 
as shown in Fig. 3. 

 

Table 1: Dipole high order multipoles. 

 

High  Order Component (∆∆∆∆Bz/ B) 

Sextupole 2.42 x 10-4 

Octupole 4.70 x 10-5 

Decapole -3.09 x 10-5 

Dodecapole -1.36 x 10-5 

14-pole -1.17 x 10-4 

 
 

  
 

Figure 3: Dynamic apertures under high order multipole 
effect. (left) The absolute dynamic aperture (blue) 
compared to the vacuum chamber size (red), (right) the 
chamber-limited dynamic aperture. 

                                                                                                                                                          
Figure 3(left) indicates that the absolute dynamic aperture 
is still enough larger than the physical one, consequently 
the high order multipoles seem tolerable by the optics. 
But when the vacuum chamber is included in the 
calculations in Fig. 3(right), we can see that these high 
order multipoles amplify the two cuts to a level that 
cannot be accepted resulting in a dynamic aperture much 
smaller than the physical one. Hence these high order 
multipoles are not tolerable by the optics, contradicting 
the indication given by Fig. 3(left). It can be noticed that 
the two cuts also have been shifted outward from the 
center. This is due to the distorted tune shifts with x and 
z-amplitudes. Propagation of the two vertical cuts down 
through the dynamic aperture indicates that the driving 
resonance is excited causing higher amplitudes for the 
particle nonlinear vertical oscillations so that the particle 
gets lost on the upper chamber limitation at lower vertical 
heights.  

This explanation is more clarified by Fig. 4 which 
shows behavior of the vertical oscillation amplitude of the 
particle versus x-position at z = 4.8 mm without and with 
high order multipoles. The blue lines represent the 
vertical physical aperture ∆z = ±5.74 mm at the 
calculation point. 
 



 

   
 

Figure 4: The vertical oscillation amplitudes versus x for a 
particle tracked at the vertical height z = 4.8 mm, without 
(left) and with (right) high order multipoles. 

 
The gradually increasing vertical amplitude with x in the 
left sides of Fig. 4 explains the dynamic aperture 
degradation in the left hand side of Figs. 2(right) and 
3(right). The two drastic increments in vertical amplitude 
at x ≈ ±21 mm which are amplified by high order 
multipole effect stand behind the two seen cuts since they 
cause the particle to exceed the vertical acceptance of the 
vacuum chamber. 
 

The Vacuum Chamber is a Simple Tool to Show 
Inner Dynamic Nonlinearity 
 

The above investigation shows that introducing the 
vacuum chamber limitations into the calculations was a 
simple tool to uncover the inner nonlinearity in SESAME 
dynamic aperture which couldn’t be seen in case of 
absolute dynamic aperture calculations.  

 

TREATING THE PROBLEM 
 
In order to understand the problem deeply and to define 

the corresponding destructive resonance, the dynamics 
was more investigated using the known Frequency Map 
Analysis technique [10-14]. The investigation showed 
that the systematic 5th order resonance 3Qx + 2Qz = 32 is 
the driving force of the drastic increment in the vertical 
oscillation amplitude of the particle which consequently 
gets lost at the vacuum chamber wall. Effect of this 
resonance becomes stronger when it encounters the 
particle at larger oscillation amplitude [15]. When the 
high order multipoles of Table 1 are applied, this 
resonance is more strengthened by the decapole 
component.   

It was possible to avoid the impact of the 5th order 
resonance by changing the working point (Qx = 7.23, Qz = 
5.19) to (Qx = 7.28, Qz = 5.19), hence moving the 
working point farther from this resonance so that the 
particle crosses it at higher x-amplitude that is already 
outside the vacuum chamber dimensions. Figure 5 shows 
this result through the less destructed chamber-limited 
dynamic aperture and the smooth vertical oscillations 
with x-amplitude even with high order multipoles.  

  
 

Figure 5: Chamber-limited dynamic aperture (left) and 
vertical oscillation amplitude with x (right), under effect 
of high order multipoles, for the new working point ((Qx 
= 7.28, Qz = 5.19). 

 

CONCLUSION 
 

This study showed that including the vacuum chamber 
limitation in the dynamic aperture calculations could be a 
simple tool, other than the complicated FMA technique, 
to uncover the nonlinearity in the inner structure of the 
dynamic aperture. In SESAME case it revealed a 
seriousness of existing 5th order resonance, mainly when 
high order multipoles are included, something which 
couldn’t be noticed in case of absolute dynamic aperture 
calculations.  
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