

Specifications for the SESAME Magnets

SES-TE-AP-SPC-0002

October 28, 2014

Authored by: M. Attal, E. Huttel, J.P. Koutchouk

Reviewed by:

Approved by:

Access List: ---Internal □----- External □

SESAME, P.O. Box 7, Allan, 19252, Jordan, www.sesame.org.jo

REVISION HISTORY

Revision	Date	Description	Author

Contents

	Conventions	4
1.	Dipole	4
	1.1 Mechanical and alignment tolerances	4
	1.1.1 Global alignment tolerances	4
	1.1.2 Break-down of uncertainties on ds	4
	1.1.3 Break-down of uncertainties on dx	5
	1.1.4 Break-down of uncertainties on dz	5
	1.1.5 Break-down of uncertainties on $d\phi_s$	5
	1.2 Magnetic strength tolerances	5
	1.2.1 Systematic imperfections	6
	1.2.2 Random imperfections	6
	1.3 Multipole strength tolerances	6
	1.3.1 Systematic imperfections	6
	1.3.2 Random imperfections	7
2.	Quadrupoles	7
	2.1 Mechanical and alignment tolerances	7
	2.1.1 Global alignment tolerances	7
	2.1.2 Break-down of uncertainties on ds	7
	2.1.3 Break-down of uncertainties on dx and dz	8
	2.1.4 Break-down of uncertainties on $d\phi_s$	8
	2.2 Magnetic strength tolerances	8
	2.2.1 Systematic imperfections	8
	2.2.2 Random imperfections	8
	2.3 Multipole strength tolerances	9
	2.3.1 Systematic imperfections	9
	2.3.2 Random imperfections	9
3.	Sextupoles	9
	3.1 Mechanical and alignment tolerances	9
	3.1.1 Global alignment tolerances	9
	3.1.2 Break-down of uncertainties on ds	10
	3.1.3 Break-down of uncertainties on <i>dx</i> and <i>dz</i>	10
	3.1.4 Break-down of uncertainties on $d\phi_s$	10
	3.2 Magnetic strength tolerances	11
	3.2.1 Systematic imperfections	11
	3.2.2 Random imperfections	11
	3.3 Multipole strength tolerances	11
	3.3.1 Systematic imperfections	11
	3.3.2 Random imperfections	12
4.	Acknowledgements	12
5.	Sources	12
6.	Annexes and comments	12

Conventions

Reference frame

The convention for the three geometrical axes is: s for longitudinal, x and z for horizontal and vertical.

Statistical definition of uncertainties and tolerances

Uncertainties (errors) are estimates on the accuracy of the knowledge of parameters. Tolerances are upper bounds of errors estimated from beam physics calculations. All random errors and tolerances are expressed in σ of a random Gaussian distribution. The equivalent peak values are taken to be $\pm 2\sigma$, i.e. the peak-to-peak tolerances are given by 4σ .Independent components of uncertainties are added quadratically.

Energy range

The specifications are given at the top energy and are taken to be identical at injection energy.

Units

All values are in mm or mrad.

1. Dipole

1.1 Mechanical and alignment tolerances

1.1.1 Global alignment tolerances [s1]

degree of freedom	rms tolerance	comments
ds rms [mm]	0.500	provisional, not restricting
dx rms [mm]	0.500	
dzrms [mm]	0.100	
dphisrms [mrad] (roll)	0.200	

1.1.2 Break-down of the uncertainties on ds [s2]

ds	uncertainties [mm rms]	comments
magnetic longitudinal center to mechanical long. center (estimated)	0.250	
mechanical longitudinalcenter to magnet reference points	0.050	mechanical references are less precise in the longitudinal direction, as compared to transverse, where the uncertainty is 5 times less
magnet support reference points to girder references	0.008	
survey accuracy for girders	0.200	
combined uncertainties	0.325	
TOLERANCE	0.500	from table 1.1.1

1.1.3 Break-down of uncertainties on dx [s2]

dx	uncertainties [mm rms]	comments
magnetic axis to magnet reference points	0.015	
magnet reference points to girder references	0.010	
survey accuracy for girders	0.100	transverse survey more accurate than longitudinal
combined uncertainties	0.102	
TOLERANCE	0.500	from table 1.1.1

1.1.4 Break-down of uncertainties on dz [s2]

dz	uncertainties [mm rms]	comments
magnetic axis to magnet reference points	0.015	
magnet reference points to girder references	0.010	
survey accuracy for girders	0.100	transverse survey more accurate than longitudinal
combined uncertainties	0.102	
TOLERANCE	0.100	from table 1.1.1

1.1.5 Break-down of uncertainties on $d\phi_s$ [s2]

døs	uncertainties [mm rms]	comments
magnetic horizontal plane to mechanical horizontal plane	0.200	
accuracy of alignment of the mechanical horizontal plane on the girders	0.050	Assumes shimming to an accuracy of ± 0.1 mrad
residual tilt of girders after alignment	0.050	
combined uncertainties	0.212	
TOLERANCE	0.200	

1.2 Magnetic strength tolerances

The dipole magnet includes a quadrupole component . The baseline strategy will be to adjust the powering to obtain the correct global dipole field integral according to the magnetic measurements. A possible error on the quadrupole component will be taken care of by rematching, based on the magnetic measurements. In case of a bias of the magnetic measurements, different for the combined function dipoles and the quadrupoles, the gradients of the QF and QD's will be scaled to cancel the observed tune shifts with beam.

1.2.1 Systematic imperfections [s2]

component	uncertainty	tolerance	comment
dipole field	$\pm 2 \times 10^{-4}$	not constrained; can be	uncertainty after correction by the
integral		adjusted.	transfer function: the residual
			uncertainty is the magnetic
			measurement accuracy of 10 ⁻⁴ rms.
quadrupole	$\pm 2 \times 10^{-4}$	+150× 10 ⁻⁴ (2.83 T/m)	Can be corrected by the adjacent QD to
field		$-450 \times 10^{-4} (2.66 \text{ T/m})$	get the designed tune, limited by the
integral			range of the QD magnetic-field.
			Outside of these tolerances, the magnet
			can be shifted sideways to modify the
			dipole field integral and use the transfer
			function to adjust the integrated
			gradient.

1.2.2 Random imperfections

component	uncertainty	tolerance	comment
dipole field	3×10^{-4} rms	15×10^{-4} rms Criterion: 2 mm orbit deviation and its	
integral	[s10]		correction limited to 0.28 mrad;
			for reference, the spread of field integral
			measured in ALBA is 13 10 ⁻⁴ rms.
quadrupole	3×10^{-4} rms	50×10^{-4}	A potential beta-beat can be corrected by
field	[s10]		adjustment of the individual powered adjacent
integral			QD; Criterion: beta beat less than 5%;
			for reference, the spread of field integral
			measured in ALBA is 16 10 ⁻⁴ rms.

1.3 Multipole strength tolerances

These tolerances are calculated in [1] either in the case of an individual multipolar error ("oneby-one"), or all imperfections combined ("global model"). Reference radius is **20 mm**.

1.3.1 Systematic imperfections

Field component	Tolerance on systematic harmonics, one by one	Tolerance on systematic harmonics, global model	comments
b3	-	-	not constrained, as chromaticity can be corrected with SF/SD; higher orders found to have no impact.
b4	$\pm 15 \times 10^{-4}$ [s7]	$\pm 10 \times 10^{-4}$ [s7,s6]	
b5	$\pm 10 \times 10^{-4} [s7]$	$\pm 10 \times 10^{-4}$ [s7,s6]	
b6	$\pm 10 \times 10^{-4}$ [s7]	$\pm 6 \times 10^{-4}$ [s7,s6]	
b7	$\pm 10 \times 10^{-4} [s7]$	$\pm 10 \times 10^{-4}$ [s7,s6]	

1.3.2 Random imperfections

Field component	Tolerance on random harmonics, one by one	Tolerance on random harmonics, global model	comments
b3	10 ×10 ⁻⁴ rms [s8]		expected to be pessimistic
b4	5 ×10 ⁻⁴ rms [s8]		(tracking with multipoles at
b5	5 ×10 ⁻⁴ rms [s8]		the magnet ends)
a3	5 ×10 ⁻⁴ rms [s8]		
a4	5 ×10 ⁻⁴ rms [s8]		
a5	$5 \times 10^{-4} \text{rms} [\text{s8}]$		

2. Quadrupoles

These specifications apply to the QF quadrupoles. For the QD quadrupoles, they can be relaxed at least by a factor 20 [s8].

2.1 Mechanical and alignment tolerances

2.1.1 Global alignment tolerances [s1]

degree of freedom	tolerance (rms)	unit	comments
ds	0.500	mm	not restricting, see Annex 2.2-2
dx	0.200	mm	see Annex 2.2-1
dz	0.200	mm	see Annex 2.2-1
$d\phi_s$ (roll)	0.500	mrad	see Annex 2.2-3

2.1.2 Break-down of the uncertainties on ds [s2]

ds	uncertainties [mm rms]	comments
magnetic longitudinal center to mechanical long. center (estimated)	0.100	
mechanical longitudinalcenter to magnet reference points	0.050	mechanical references are less precise in the longitudinal direction, as compared to transverse, where the uncertainty is 5 times less
magnet support reference points to girder references	0.050	
survey accuracy for girders	0.200	
combined uncertainties	0.235	
TOLERANCE	0.500	from table 3.1.1

2.1.3 Break-down of uncertainties on dx and dz [s2]

dx &dz	uncertainties [mm rms]	comments
magnetic axis to magnet reference points	0.015	
magnet reference points to girder references	0.010	
survey accuracy for girders	0.100	transverse survey more accurate than longitudinal
combined uncertainties	0.102	
TOLERANCE	0.200	from table 3.1.1

2.1.4 Break-down of uncertainties on $d\phi_s$ [s2]

døs	uncertainties	comments
	[mradrms]	
magnetic horizontal plane to	0.200	
mechanical horizontal plane		
accuracy of alignment of the	0.050	Assumes shimming to an accuracy of
mechanical horizontal plane		$\pm 0.1 \text{ mrad}$
on the girders		
residual tilt of girders after	0.050	
alignment		
combined uncertainties	0.205	
TOLERANCE	0.500	from table 3.1.1

2.2 Magnetic strength tolerances

2.2.1 Systematic imperfections [s2]

Туре	uncertainty	tolerance	comment
QF & QD	$\pm 5 \times 10^{-4}$ [s5]	not constrained;	uncertainty after correction by the
		TF can be	transfer function: a systematic bias of
		adjusted.	the QF/QD measurement bench would
			introduce a systematic error; it can be
			corrected with beam, by scaling all
			QF/QD strength to restore both tunes.

2.2.2 Random imperfections

type	uncertainty	tolerance	comment
QF & QD	0.1× 10 ⁻⁴ rms[s5]	not constrained; individual TF'scan be adjusted.	uncertainty after correction by the transfer function: a systematic bias of the QF/QD measurement bench would introduce a systematic error; measured beta beat canbe used for correction if the orbit sampling by the BPM is sufficient.

2.3 Multipole strength tolerances [s1, s6]

These tolerances are calculated in [1] either in the case of an individual multipolar error ("oneby-one"), or all imperfections combined ("global model"). Reference radius is 24 mm.

2.3.1 Systematic imperfections

Field component	<i>Tolerance on systematic</i> <i>harmonics, one by one</i>	Tolerance on systematic harmonics, global model	comments
b6	$\pm 50 \times 10^{-4}$	$\pm 6 \times 10^{-4}$	
b10	$\pm 10 \times 10^{-4}$	$\pm 10 \times 10^{-4}$	
b14	$\pm 20 \times 10^{-4}$	$\pm 20 \times 10^{-4}$	

2.3.2 Random imperfections

Field component	Tolerance on random harmonics, one by one	Tolerance on random harmonics, global model	comments
b3			
a3	700×10^{-4} rms	10×10^{-4} rms	[s6], [s7]
b4	100×10^{-4} rms	5×10^{-4} rms	[s6], sensitive [s7]
a4	150×10^{-4} rms	10×10^{-4} rms	[s6], [s7]
b5	100×10^{-4} rms	5×10^{-4} rms	[s6], sensitive [s7], [s8]
a5	100×10^{-4} rms	50×10^{-4} rms	[s6], [s7]

3. Sextupoles

3.1 Mechanical and alignment tolerances

3.1.1 Global alignment tolerances [s1]

degree of freedom	tolerance (rms)	unit	comments
ds	0.500	mm	not restricting, see Annex 2.2-2
dx	0.200	mm	see Annex 2.2-1
dz	0.200	mm	see Annex 2.2-1
$d\phi_s$ (roll)	0.500	mrad	see Annex 2.2-3

3.1.2 Break-down of the uncertainties on ds [s2]

ds	uncertainties [mm rms]	comments
magnetic longitudinal center	0.100	
(estimated)		
mechanical	0.050	mechanical references are less
longitudinalcenter to magnet		precise in the longitudinal direction,
reference points		as compared to transverse, where the
		uncertainty is 5 times less
magnet support reference	0.050	
points to girder references		
survey accuracy for girders	0.200	
combined uncertainties	0.235	
TOLERANCE	0.500	from table 3.1.1

3.1.3 Break-down of uncertainties on dx and dz [s2]

dx &dz	uncertainties [mm rms]	comments
magnetic axis to magnet reference points	0.015	
magnet reference points to girder references	0.010	
survey accuracy for girders	0.100	transverse survey more accurate than longitudinal
combined uncertainties	0.100	
TOLERANCE	0.200	from table 3.1.1

3.1.4 Break-down of uncertainties on $d\phi_s$ [s2]

dphis	uncertainties	comments
	[mradrms]	
magnetic horizontal plane to	0.200	
mechanical horizontal plane		
accuracy of alignment of the	0.050	Assumes shimming to an accuracy of
mechanical horizontal plane		$\pm 0.1 \text{ mrad}$
on the girders		
residual tilt of girders after	0.050	
alignment		
combined uncertainties	0.205	
TOLERANCE	0.500	from table 3.1.1

3.2 Magnetic strength tolerances

3.2.1 Systematic imperfections [s2]

Туре	uncertainty	tolerance	comment
SF & SD	$\pm 5 \times 10^{-4}$ [s3]	none	can be corrected via the transfer function based on magnetic measurements, down to the absolute accuracy of the measuring bench. Can be further calibrated with beam-based measurement of chromaticity.

3.2.2 Random imperfections

By design, the sextupole strength is subject to errors driven by the settings of the dipole and skew quadrupole circuits, which are considered essentially random.

Туре	uncertainty	tolerance	comment
SF & SD	<30× 10 ⁻⁴ rms [s3]	100 × 10 ⁻⁴ rms [s4]	The large tolerance may stem from tracking with b3 alone. For reference, the spread of field integral measured in ALBA is 12 10 ⁻⁴ rms. The LEP tolerance was 40 10 ⁻⁴ rms.

3.3 Multipole strength tolerances

These tolerances are calculated in [1] either in the case of an individual multipolar error ("one-byone"), or all imperfections combined ("global model").

Reference radius is 24 mm. These prescriptions shall be respected for combined excitation of the sextupole and corrector windings, the latter producing the maximum kick used in simulations, i.e. .28 mrd [1]. Indeed the correctors induce decapole components which became worrisome for the 7.24/5.20 working point [7] but less to the 7.24/6.20. In consequence the working point had to be moved to become less critical [8]. For random errors, it is assumed that the main harmonics to be considered are n=4 and 5, upright and skew.

3.3.1	Systematic	imperfections
0.011	bystematic	imperjections

Field component	Tolerance on systematic harmonics, one by one	Tolerance on systematic harmonics, global model	comments
b9	$\pm 200 imes 10^{-4}$	$\pm 20 \times 10^{-4}$	possibly sensitive, see Annex 2.4-1
b15	$\pm 10 \times 10^{-4}$	$\pm 10 \times 10^{-4}$	

3.3.2 Random imperfections

Field component	Tolerance on random harmonics, one by one	Tolerance on random harmonics, global model	comments
b4	$3000 \times 10^{-4} \text{rms}$	$1000 \times 10^{-4} rms$	
b5	2000×10^{-4} rms	1000×10^{-4} rms	
a4	negligible effect	negligible effect	
a5	2000×10^{-4} rms	$1000 \times 10^{-4} rms$	

4. Acknowledgements

The authors would like to express their deep thanks to thank A. Milanese, D. Tomasini, L. Walkiers for providing the design-parameter, magnetic-properties and mechanical tolerances for the magnets.

5. Sources

- [s1]: E. Huttel et al., summarized in "strategy for magnet tolerancesv2EH.docx", 27/03/2014
- [s2]: L. Walckiers et al., summarized in "strategy for magnet tolerancesv2.0.docx", 06/03/2014
- [s3]: M. Ebbeni, L. Walckiers et al., measurement of the CERN sextupole prototype, 2014, to be released.
- [s4]: M. Attal, Tolerance on sextupole strength errors, July 2014.
- [s5]: M. Ebbeni, presentation to TAC, 29/09/2014.
- [s6]: M.Attal, E. Huttel et al., Multipole and Alignment error Limits for the SESAME Storage ring Magnets, IPAC2014
- [s7]: M. Attal, E. Huttel, The magnetic error tolerances in SESAME storage ring magnets, SESAME Note SES-TE-AP-TN-004,2014.
- [s8]: E. Huttel, Multipole tolerances of the SESAME storage ring magnets, 25-05-2014, SES-TE-AP-TN-0002 Rev 0.1.
- [s9]: E. Huttel, Effect of random multipole errors on the dynamic aperture and beta beat, 19-01-2013
- [s10]: Estimates by D. Tommasini, 23/10/2014.

6. Annexes and Comments

6.1 Tolerances on beam parameters

Quantity	tolerance	justification
Maximum acceptable H orbit rms	2 mm	Reasonable corrector
distortion before correction		strength for correction
Maximum acceptable V orbit rms	2 mm	0.5 mrad [4]
distortion before correction		
Maximum acceptable H dispersion rms	Not specified	emittance blow-up less
distortion		than
Maximum acceptable linear betatron	Not specified	Reasonable corrector
coupling before correction		strength for correction
Maximum acceptable β beating (H or V)	5%	loss of brilliance less than
Maximum correctable tune shifts	1	beta beating less than xx%
		flexibility in choice of
		working point

Required dynamic aperture	~ equal to the physical aperture	•	injection: minimize loss of injected beam by betatron injection top energy:
Maximum allowable orbit drift over 8 hrs	10% of beam size		
Maximum allowable tune drift over 8 hrs	0.01		

6.2 Alignment

Alignment and dipole strength errors assumed for the SESAME design: M. Attal, Technical Note O-6, 2006 (<u>http://sesame.org.jo/sesame/images/sesame-publications/Technical_Notes/O-6.pdf</u>) and new 2014 iteration:

	Dipole					Quadru	pole QF	Sextup	ole SV	
1 rms	dB/B	dh	dv	$d\phi_s$	$d\phi_{y}$	$d\phi_x$	dx	dv	dx	dv
error	$2 10^{-3}$	0.2 mm	0.2 mm	0.2 mrad	0.2 mrad	0.2 mrad	0.2 mm	0.2 mm	0.2 mm	0.2 mm

M. Attal, the magnetic error tolerances on SESAME storage ring magnets, 7-2-2013

Misalignment	Dipole	Quadrupole	Sextupole
dx = dy = ds (mm)	0.2	0.1	0.1
$d\phi_x = d\phi_y = d\phi_s (mrad)$	0.2	0.1	0.1

- 2. The longitudinal tolerance ds is provisional and not restrictive on machine performance. It will be confirmed or updated after the measurement of the dipole prototype in ALBA. It is agreed to increase it to 0.5 mm (or beyond) from its initial estimate of 0.1 or 0.2 mm given the absence of optical impact, EH mail 22/4/2014.
- 3. For all magnet types, the dφx and dφz are uncritical and are already determined from the dx and dy tolerances and need not be specified (EH). For dφs, it is agreed to increase its tolerance from 0.1 mradrms to 0.5 mradrms forsextupoles in "strategy for magnet tolerancesv3" 14-5-2014.
- 4. The accuracy of the magnetic alignment of the individual magnets of series like we have (several tens of magnets) strongly depends on the training of, and time spent by, the bench operators (LW).
- 5. Provisions for tuning the alignment in SESAME and on the measuring bench
 - The design of the SESAME magnet stands foresees adjustment by shims of 50 μ m. The measuring bench has the same provisions.
 - Concerning the quadrupole and sextupole the roll can be corrected on a 0.1 mrad level mechanically, at girder assembly (since shim adjustment)
 - For the CERN/SESAME measuring bench an uncertainty of +/- 0.5 mrad error is stated if no particular effort required during measurement campaign compared to 0.1 mrad for SOLEIL and others.
- 6. Comparison with other machines:
 - LEP: transverse alignment to 0.15 mm rms, roll to 0.25 mradrms for a coupling ratio of 4%.
 - ALBA, SOLEIL and Diamond: transverse alignment to 0.025 mm rms
 - SOLEIL tolerances for a coupling ratio of 1% (Alain Lestrade, IWAA2004, CERN, Geneva, 4-7 October 2004)

rms values	dipoles	quadrupoles	girders
ds [mm]	.5	.2	.5
dx [mm]	.5	.02	.05
dz [mm]	.5	.02	.05
Φs [m rad]	.1	.1	.1
Φs [m rad]	.2	1	1
Φs [m rad]	.2	1	1

- 7. ESRF: accuracy of the alignment instrumentation reported to be 0.11 mm rms (D. Martin, G. Gala, IWAA2004), for typical coupling ratio less than 1%.
- 8. Mail from Dominique 7/5/2014:Pour l'alignement vertical, il me semble assez aisé de le réaliser dans les 0.1 mm, même en absolu sur l'ensemble de l'anneau car on peut réaliser un cheminement assez précis.Je ne sais pas quelles sont les tolérances demandées pour l'alignement transversal mais il me paraitrait assez judicieux de faire un réseau de points à l'extérieur de l'anneau donc dans le hall et de rentrer les coordonnées des points dans l'anneau via les trous des lignes qui sont vides pour l'instant, de matérialiser des points dans l'anneau et ensuite de faire un cheminement polygonal (angles et distances) entre ces points. Cela permettra au moins d'avoir un bon réseau initial et d'aligner les éléments par rapport à ces points.Quandmeme pas trop de problème pour l'alignement long. dans les 0.5 mm.... En fait, on peut atteindre 0.1 mm pour les petites machines avec du soin et des equipements appropries, mais il n'y a jamais eu de demande.

6.3 Magnet strength tolerances

case	Conditions	SF		SD		
		integrated strength	power supply current [A]	integrated strength	power supply current [A]	
	magnet ratings	27 T/m	223	27 T/m	223	
1	Q'=5		73		115	
2	Qx'=1, Qv'=2		60		99	
3	Q'~0		56		87	

1. Reference sextupole strength and perturbation by the orbit corrector (jpk 26/6/2014):

sextupole current	dipole corrector current	perturbation of the	corresponding rms
[A]	[A]	sextupole strength	error [10 ⁻⁴]
250	20	2.3%	115
223	10	1.3%	65
115 (SD, case 1)	10	2.5%	125
73 (SF, case 1)	10	3.9%	195
99 (SD, case 2)	10	2.9%	145
60 (SF, case 2)	10	4.8%	240
87 (SD, case 3)	10	3.3%	165
56 (SF, case 3)	10	5.1%	255

This table was calculated from line 1 given by Louis, assuming only linear dependences. The error specification is 100×10^{-4} rms, extrapolated from studies of a case with errors of 30×10^{-4} rms. We are almost on order of magnitude higher than the case tested for this first measurement at maximum sextupole current.

2. The uncertainty in table 3.2.2 is derived from the second measurement at the reference current of . ???

6.4 Multipole tolerances

6.4.1 General

1. From tracking harmonics one by one to a global model, there can be some arbitrariness in reducing the various multipoles to achieve the wanted dynamic aperture. The harmonic tolerances for the global model are thus sufficient but not necessarily necessary.

6.4.2 Quadrupoles

1. ALBA and SOLEIL specifications and achievements for various types of quadrupoles.

The tolerances are given for SQRT(A^2+B^2)/B3. All values in 10⁻⁴ units. Ref radius is 25 mm for ALBA and 30 mm for SOLEIL.

order	tolerance ALBA [10 ⁻⁴]	harmonic	measurements ALBA		measure SOLI	ements EIL
			average	rms	average	rms
2				10		
3	8 or 10	b3	-0.4 to 1.5	≤ 3	-1.6 to 2.9	≤ 2
		a3	-1.4 to 0.4	≤ 3.4	0.5	3.2
4	6 or 8	b4	-1.5 to 0	≤ 2.4	-3.4 to -8.6	≤ 3.7
		a4	-0.3 to 0.3	≤ 1.2		
5	4 or 6	b5				
		a5				
6	2	b6	-0.9 to 0.9	≤ 1.3	0.7 to 2.4	0.5
		a6				
10	4	b10	-3.5 to -2.0	≤ 0.4	0.7 to 1.9	0.1
14	2	b14	-0.8	0.3	1.0	0.1
rest	1					

Magnetic center deviations: within +/- 0.03mm, typically 0.01 mm rms, tilt 0.04 mrad.

ALBA: Presentation by M. Pont, July 2011

SOLEIL: P. Brunell at al: Magnetic Measurements Results of the Dipoles, EPAC2006, Quadrupoles and Sextupoles of the Soleil Storage Ring.

6.4.3 Sextupoles

1. ALBA specs and results

The tolerances are given for SQRT(A^2+B^2)/B3. All values in 10⁻⁴ units. Ref radius is 25 mm.

order	tolerance	harmonic	measurements		LEP
	<i>[10⁻⁴]</i>		average	rms	tolerances at r=25 mm
3		b3		12	
4	10	b4	-0.7	3.4	5rms
		a4	-0.7	3.2	
5	8	b5	-1.6	1.5	2rms
		a5	1.1	1.7	
6	1	b6	0.2	0.7	1 rms
		a6	1.6	1.5	
9	5	b9	-4.3	0.4	< 1
					(systematic)
15	7	b15	2.3	0.3	
rest	1				

Magnetic center deviation: within +/- 0.03mm.

2. LEP specifications for sextupoles random errors: all orders $< 200 \times 10^{-4}$ at R=59 mm.