

SESAME/JSPS School

Beamline

Noriyuki Igarashi (Photon Factory, IMSS, KEK, Japan)

Anman(Jordan) on Nov 14, 2011

Photon Factory (1)

Photon Factory (2)

Mt. Tsukuba (877 m)

KEK-B (TRISATN)

KEK Tsukuba Campus since 1971

2.5-GeV PF Ring since March1982

Linear accelerator e⁻ upto 8 Gev e⁺ upto 3.5 GeV

Animation of synchrotron ring and beamline

Institute for Storage Ring Facilities <u>http://www.isa.au.dk/</u> Electron Injection, Storage and Synchrotron Radiation Light Generation in the Storage Ring ASTRID. (Credit: Coldvision Studio/ISA)

Property of ISA, (2005)

How the SR beamline looks

Roles of beamline

- Processing SR beam ⇒ beamline optics
- Conducting the beamline component ⇒ Interlock system (Keep in vacuum and radiation safety)

Properties of Synchrotron Radiation

Broad continuous spectrum (IR to hard X-ray):

wide energy selectivity

High brilliance:

beam can be focused down to extremely small size.
⇒small objects / small spatial resolution scanning beam can be well-collimated.
⇒high definition imaging

Polarization:

anisotropic / magnetic structure analysis

Pulsed (time structure):

kinetics / dynamics study

Properties of Synchrotron Radiation

Broad continuous spectrum (IR to hard X-ray): wide energy selectivity

High brilliance:

beam can be focused down to extremely small size.
⇒small objects / small spatial resolution scanning
beam can be well-collimated.
⇒high definition imaging

Polarization:

anisotropic / magnetic structure analysis

Pulsed (time structure):

kinetics / dynamics study

-Processing SR beam for experimental use-SR has a broad and continuous spectrum

Synchrotron Radiation can be used for a wide range of applications, from Infrared to hard X-ray applications on material sciences. (mainly, UV to X-ray)

Investigation of material atomic structure with hard X-rays

Wavelength of hard X-rays \approx atomic distance in materials

Material science with vacuum ultraviolet and soft X-rays

Absorption spectra Photoelectron spectra

Information on electronic states

Materials with High-temperature superconductivity (HTC) Giant magnetic resistance (GMR) Organic thin films Bio-molecules

Various SR experimental methods

Spectra of Photon Factory light sources

Bending magnet generates a white SR beam.

Brilliance (photons/sec/mm²/mrad²/0.1%b.w.)

Monochromatic focused beam

In case of visible light, we can use a prism to make choice of preferable energy.

Photon energy selection

Prism absorbs VUV photons extremely. X-rays have nearly 1 of refractive index.

Diffraction VUV-SX: gratings HX: crystals

Suppression of higher order components

Photon energy selection in VSX -Diffraction gratings-

Enhancement occurs when the optical path difference between 1-1' and 2-2' is $n\lambda$, where *n* is an integer.

Grating equation : $\sin \alpha + \sin \beta = n\lambda/d$

d : several microns to several sub microns. \rightarrow diffraction gratings are effective for the photons of $\lambda \ge 0.8$ nm (hv ≤ 1500 eV).

Dispersion by a diffraction grating

Window size defines the energy resolution and intensity.

Schematics of grating monochromator

Optical path difference between 1-1^{\prime} and 2-2^{\prime} is AP+PB=2*d* sin θ . Bragg^{\prime}s law: diffraction occurs for **2***d* sin θ =n λ , where n is an integer. 1-1^{\prime} and 1a-1a^{\prime} have the same optical path length.

Energy resolution is quite high ($<10^{-3} \Delta E/E$)

Double crystal monochromator

LINAC (Linear Accelerator)

Properties of Synchrotron Radiation

Broad continuous spectrum (IR to hard X-ray): wide energy selectivity

High brilliance:

beam can be focused down to extremely small size.
⇒small objects / small spatial resolution scanning beam can be well-collimated.
⇒high definition imaging

Polarization:

anisotropic / magnetic structure analysis

Pulsed (time structure):

kinetics / dynamics study

Role of SR beamlines

-Processing SR beam for experimental use-

SR is well collimated, however, still divergent (even undulator).

Light source: Sto	orage ring	Experimental station
Dive	ergent SR beam	
Important parameters and units		
Emittance:	nm-rad (convolution of size and d	livergence)
Brilliance: Flux: Flux density:	photons/s/mm ² /mrad ² /0.1%B.W. photons/s/0.1%B.W. photons/s/mm ² /0.1%B.W.	

SR beam is electromagnetic wave. We can imagine the beam processing same as visible light.

To make a small-size beam, slit system is available but Still divergent.

If a focusing lens is available, we can obtain focused beam. (later I will show some focusing devices)

The smaller the source size is, the smaller the focus size is. SR beam can light up a smaller object!

Also, we can make collimated beam with lens.

High brilliance beam (small size and divergence) gives better collimated beam. \Rightarrow better for imaging etc. SR can analyze very fine structure!

Shaping SR beam -Reflective plain mirror-

For fine focusing, perfect Slope error : ~0.25 arc sec or 1 μ rad surface is necessary. surface roughness : ~2-3 Å in RMS

Heavy atom coated mirror is used for hard X-ray

In x-rays region, the critacal angle is quite small. Even Pt, Rh case, a few mrad at 12 keV (about 0.1nm)

Shaping SR beam -Reflective ellipsoidal mirror-

Shaping SR beam -Reflective Toroidal mirror-

- Pre-fabricated mirror ⇒expensive, size limitation, fixed focal point
- Bent cylinder mirror (approximated) \Rightarrow not perfect (small aberration)

Shaping SR beam -Microbeam by reflective mirror-

Independent focusing in H and V

Depending on the quality, slope error and surface roughness, several 10 nm spot size is attained.

equal to diffraction limit!

Shaping SR beam -Reflective paraboloidal mirror-

Same as toroidal mirror, bent conical mirror Is used as an approximate paraboloidal surface.

Shaping SR beam -Fresnel zone plates-

Focus size of several 10th nm is feasible now. (depending on the fine structure of outer shell)

It's difficult to use this for hard X-rays, due to its strong penetration power.

Shaping SR beam -Other x-ray focusing tools-

Lenses are made of C, Be, etc.

Properties of Synchrotron Radiation

Broad continuous spectrum (IR to hard X-ray): wide energy selectivity

High brilliance:

beam can be focused down to extremely small size.
⇒small objects / small spatial resolution scanning
beam can be well-collimated.
⇒high definition imaging

Polarization:

anisotropic / magnetic structure analysis

Pulsed (time structure):

kinetics / dynamics study

Various polarization states

Synchrotron provides different kinds of polarized beam and the polarization characteristics can be transformed by optics.

M. Suzuki and T. Hirono, JSSRR Vol. 19 No.6 (2006)

Properties of Synchrotron Radiation

Broad continuous spectrum (IR to hard X-ray): wide energy selectivity

High brilliance:

beam can be focused down to extremely small size.
⇒small objects / small spatial resolution scanning
beam can be well-collimated.
⇒high definition imaging

Polarization:

anisotropic / magnetic structure analysis

Pulsed (time structure):

kinetics / dynamics study

Pump-Probe time resolved measurement

S. Adachi and Y. Tanaka, JSSRR Vol. 20 No.2 (2007)

Other beamline components

- Beam shutter
- Absorber
- Beam stopper
- Beam monitor (intensity/position)
- Slits
- View port
- Be window / Kapton window
- etc....

Conducting SR beam to experimental stations

1) VUV-SX region : absorption by air and any materials → ultrahigh vacuum
 2) Hard X region : Beryllium windows (BW) to separate the ring and the BL scattering by air → high radiation level → vacuum

Radiation hazard \rightarrow Beam Shutters, Experimental Hutch High heat load to BL elements \rightarrow monitoring the cooling systems

SAFETY monitor and control system is critically important!