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Synchrotron-radiation photoemission spectroscopy: 
Application to the high-throughput characterization of devices 
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Outline of the lecture 
1) Principle of photoemission and x-ray absorption spectroscopy 
2) Evaluation of chemical bonding (valence) states by core-level shift 
3) Determination of band diagram of Schottky junction and field effect transistor 
(FET) by photoemission spectroscopy.  
4) Recent activities →Practical sessions  



The interface is the device 
Herbert Kroemer, Nobel Lecture in 2000. 
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The devices (MOS-FET) used in recent computer 
are scaled down to nm scale 
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Si MOS-FET transistor 

Influenza virus 

For designing the high-performance devices, it is important to 
characterize the interfacial electronic structure (chemical 
states, band diagram, etc. ) of devices in nm region. 

Channel (the interface between Si and other materials) 

Oxides 
Semiconductor 

Interface 

Metal Metal Chemical reaction occurs at the interface, and the physical 
properties of bulk material are modified at the interface.  



Why is your computer becoming so hot? 
MOS transistor 

Silicide 
 MSi2 : Metal 

Silicate 
 MSiO4 : Insulator (MO2)x(SiO2)1-x 

Leak current 
• Due to silicide metal formation at 
the interface 

• Due to the crystallization of gate 
insulator (amorphous) 

For designing the high-performance 
devices, it is important to characterize the 
interfacial electronic structure (chemical 
states, band diagram, etc. ) of devices 

+ - 

Photoemission characterization 
using SR light  
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Principle of photoemission spectroscopy : 
Photoelectric Effect 

The phenomenon of photoemission was discovered by Dr. H.R. 
Hertz in 1887. 

Dr. A. Einstein was able to explain the systematics by invoking 
the quantum nature of light (Novel Prize in 1921). 

eU = Ekin, max = hω - φ 

ω : frequency of the light 
Ekin, max  : the maximum electron kinetic energy 
h  : Planck’s constant 
φ  : Work function 

Schematic Drawing of an early 
“photoemission” experiment. 

Ultraviolet radiation External photoelectron 

U: the retarding voltage 
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Electronegativity χ (eV)
φ = 2.27 χ + 0.34 eV

Principle of photoemission spectroscopy : 
Work Functions 

The work function is the minimum energy needed to remove an electron from a 
solid to a point outside the solid surface (or energy needed to move an 
electron from the Fermi level into vacuum). 

Photoelectrons are emitted from the solid surface by irradiating the light.  
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hν = EB + Ekin. + φ
EB      ; Binding Energy
Ekin.  ; Kinetic Energy of Photoelectrons 
φ      ; Work functions

Principle of photoemission spectroscopy 

e-
Sample 

Photon source Detector 

Number of emitted photoelectrons 
with kinetic energy of Ekin. 

hν
Ekin.The light radiated from the photon source impinges on the 

sample, and the photoelectron are then analyzed with respect 
with their kinetic energy in an electrostatic analyzer. 



Density of States 
Core level

Principle of photoemission spectroscopy 

Detect the photoemission intensity 
as a function of binding energy. 

EB = hν - Ekin. - φ

Fermi Golden Rule 
Photoemission Intensity ( I(w) ) 

Density of states 
Transition Matrix 
(Photoionization Crosssection) 
Depending on the photon energy 



Instruments： Electron Analyzer 
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Photoemission Chamber@SR 
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Photoemission in the soft-x-ray region 

Photoemission spectroscopy (PES) 

X-ray photoemission spectroscopy (XPS) 
 (Electron Spectroscopy for Chemical Analysis; ESCA) 

Core level 

Valence band 

Soft x-ray@
SR 

Mg Ka :1253.6 eV 
Al Ka :1486.6eV 

He I :21.22 eV 
He II : 40.8 eV Vacuum 

level 

Ultraviolet X-ray 
Ultraviolet photoemission spectroscopy (UPS) 

Core levels 

Core levels（XPS）�→Elemental selectivity
Chemical composition analysis 
 Chemical state analysis

Valence band（UPS）→ Density of States
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XPS : Chemical composition analysis 

Elemental selectivity 

Photoemission spectroscopy (PES) 

X-ray photoemission spectroscopy (XPS) 
 (Electron Spectroscopy for Chemical Analysis (ESCA)) 

Core level 

Ultraviolet photoemission spectroscopy (UPS) 
Valence band 

Soft x-ray@
SR 

Mg Ka :1253.6 eV 
Al Ka :1486.6eV 

He I :21.22 eV 
He II : 40.8 eV 

XPS spectra of Si. 
(pl denote the prasmon) Binding Energy (eV) 
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Si, O, and C 

Contamination of Si wafers is some carbon 
oxides. 



XPS : Chemical composition analysis 

Elemental selectivity 

Photoemission spectroscopy (PES) 

X-ray photoemission spectroscopy (XPS) 
 (Electron Spectroscopy for Chemical Analysis) 

Core level 

Soft x-ray@
SR 

Mg Ka :1253.6 eV 
Al Ka :1486.6eV 

By analyzing the intensity of 
each core level, the chemical 
composition is estimated. 

XPS spectra of  
 La1-xSrxMnO3 film 

By changing the photon energy, 
the Auger peaks are distinguish. 



XPS : Chemical states analysis 
XPS→Elemental specificity、Chemical composition analysis

Chemical state analysis (Chemical shift)��
The electric potential around core electrons is 
changed depending on the difference of chemical 
bonding. Therefore, reflecting the chemical bonding 
states,  the energy position of the core level shifts.

Reduction

Binding Energy 
Chemical Shift of Li 1s core level. 
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Analysis for high-k ZrO2 gate 
Silicide Formation 

Si substrates 

ZrSiO4 



UPS : Valence Band Spectra 
UPS →Direct determination of the density of states ����

Insulator

Insulator

Metal or Semiconductor 

Valence band maximum 

Band structure calculation Metal
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Thickness Dependence of SrRuO3
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Probing depth 

λ

Mg Ka 

Al Ka 

Soft x-ray 

Escape depth (mean free path) of photoelectrons 
depends on the kinetic energy.  

Photoemission is a surface sensitive prove. 

IPES = exp(-d /λ·cosθ)

IPES 

d 

e-
θ

Chemical states at the surface 
(interface). 

The escape depth in the soft x-ray region is ranged from 
1 to 10nm.  Thus, we studies the surface states of solid. 



Surface sensitivity 

Chemical shift

IPES  = exp(-d/λ) 

IPES 

d 

Intenisty 

Interface 

Photoemission is one of the best prove to study the 
electronic structure at the surface and interface. 

The intensity of photoelectrons is decade as a function of exp(-d  /λ⋅χοσθ).  Therefore, we 
are able to extract the surface and/or interface components by changing the photon energy 
(kinetic energy of photoelectrons) and the angle between the incident light and the normal of 
the sample surface. 

IPES = exp(-d /λ·cosθ)

Si surface is oxidized. 



Depth profiling using angle dependent XPS 
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High brilliance and resolution: High-throughput and precise characterization  
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Application to the high-throughput 
characterization for devices 

SPring-8 

Linac

Photon Factory 

1 km
B-Factory

SR facilities (SX region)  
in Japan



PF Ring& Beam Lines for VUV-SX

BL28: UPS 
VUV (30-300 eV) 
For High-resolution PES&ARPES

BL2C: XPS, XAS 
SX (300-1500 eV) 
For High-resolution XPS

BL16: XPS,MCD 
SX (300-1500 eV) 
For MCD, XAS

BL13: UPS 
VUV (50-1000 eV) 
For High-resolution PES&ARPES

Picture inside of PF



Beam Line 2C: For High-resolution XPS

BL28: 
VUV (30-300 eV) 
For High-resolution PES&ARPES

BL2C: 
SX (300-1500 eV) 
For High-resolution XPS

BL16: 
SX (300-1500 eV) 
For MCD, XAS

BL13: 
VUV (50-1000 eV) 
For High-resolution PES&ARPES

E/ΔE ≦ ～ 10000 
109 ～ 1010 photons /sec/0.02%BW



SR

Photoemission Chamber 

Preparation Chamber 

Laser Molecular Beam 
Epitaxy Apparatus 

@KEK-PF BL-2C 

Manipulator
(two‐axial rota+ng stage)

High resolution photoemission analyzer
VG-Scineta SES2002

New in-situ PES + Laser MBE system 
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Determination of the band diagram 
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Band diagram 



O 1s

Eg

hν

Valence band

Conduction band

XAS；
Measure the sample current (intensity of emitted 
electrons) by changing the photon energy. 

690 695 700 705

Photon energy (eV)
530 535 540 545

Information of conduction band

X-ray absorption spectroscopy (XAS) 

Tunable Photon Energy provided from SR 

O K-edge 



X-ray absorption spectroscopy (XAS) 

Eg

吸収端(absorption edge)の決定に、
O 1sの正確な位置が必要
���XPSの利用�

XAS SiO2

Determined 
by XPS 

Absrption  Edge 

(Conduction band minimum) 

(Valence band minimum) 

EF 
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S. Q. Liu et al., Appl. Phys. Lett. 76, 2749 (2000).

+ + + + - - - - 
High Resistance States 

Low Resistance States 

Two stable resistance states 
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Resistance Changes by Application of Pulse Volatage 

Resistance switching behavior in metal/oxide/metal structures 

Resistance Random Access Memory 
(ReRAM) 

While various RS mechanisms have been proposed, 
the mechanism have not been fully understood yet. 



Possible Mechanism for ReRAM 

A. Sawa et al., Appl. Phys. Lett. 
85, 4073 (2004).Bipolar switching 

- 

LRS HRS 

+ 
O vacancies 

Modulation of Schottoky 
Barrier height 

Change in conductivity 
due to oxygen deficient 

M. Janousch et al., Adv. Mater. 
19, 2232 (2007).

Importance of chemical reaction 
at metal/oxides interface 

Chemical states  
at the interface 

Photoemission 
  spectroscopy 

Interface type 



Characteristics of Pt/Ta2O5-d/TaOx ReRAM Device 

Z. Wei et al., IEDM Tech. Dig. 293-296 (2008).

Depth profiling for Ta/O composition (Ar sputtering) 

Bi-polar type resistance switching 

Resistance switching behabior IV characteristics 

Ta2O5-δ

TaOx 

Top electrode 

Bottom （Pt）

Device structures 

30 nm 
10 nm 



5 µm x 20 µm 

X X’ 

Y 

Y’ 

Photograph （Devices: 2 x 50 = 100）

HX-PES@Spring-8 

Device Structure for HXPES 
Measurements (Fablication Process) 

Y-Y’ 

X-X’ 

Poly-Si

Poly-Si　 Poly-Si　

Top electrode（Pt 10 nm）     

Contact layer       

TaOx （30 nm）

Top electrode-2          

Bottom electrode              

Pt 3 nm（To prevent charge up）



Hard X-Ray PES（BL47XU@SPring-8）

Energy Resolustion 230 meV 

Photon Energy 8 keV 

Binding Energy (meV) 
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Change in Chemical States at On and Off States: 
Redox Reactions 

The intensity of reduced components changes with resistance switching. 
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The intensity of reduced components changes with resistance switching. 
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Change in Chemical States at On and Off States: 
Redox Reactions 

The intensity of reduced components changes with resistance switching. 
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Chemical Changes of Ta2O5-d Asociated with Resistance Changes 
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at the interface 

Ω

Redox reaction at the interface induced by applicaton of pulse 
voltage is indispensable for ReRAM operation. 



Summary 
Photoemission spectroscopy combined with synchrotron radiation is powerful experimental 
technique to study the surface and interface electronic structures of devices. 

Valence band spectra 
(X-ray absorption spectra) 

Core level spectra Chemical compositoin analysis 

Chemical state analysis 

Density of states  
Valence band maximum 
(Conduction band minimum) 

Direct observation of electronic structures. 

“Simple is the best” 


