

### Synchrotron-radiation photoemission spectroscopy: Application to the high-throughput characterization of devices

Hiroshi KUMIGASHIRA

Photon Factory, KEK

#### Outline of the lecture

1) Principle of photoemission and x-ray absorption spectroscopy

- 2) Evaluation of chemical bonding (valence) states by core-level shift
- 3) Determination of band diagram of Schottky junction and field effect transistor

(FET) by photoemission spectroscopy.

4) Recent activities  $\rightarrow$  Practical sessions



# Si MOS-FET transistor



**Channel** (the interface between Si and other materials)

For designing the high-performance devices, it is important to characterize the interfacial electronic structure (chemical states, band diagram, etc.) of devices in nm region.

# Why is your computer becoming so hot?

# MOS transistor



P. A. Packan, Science **285**, 2079 (1999).

## Leak current

•Due to silicide metal formation at the interface

•Due to the crystallization of gate insulator (amorphous)

For designing the high-performance devices, it is important to characterize the interfacial electronic structure (chemical states, band diagram, etc.) of devices

#### Silicide

```
MSi<sub>2</sub>: Metal
```

Silicate

```
MSiO_4: Insulator (MO2)<sub>x</sub>(SiO2)<sub>1-x</sub>
```

Photoemission characterization using SR light

## **Advantage of SR-PES**



#### Principle of photoemission spectroscopy : **Photoelectric Effect**

Schematic Drawing of an early "photoemission" experiment.

The phenomenon of photoemission was discovered by Dr. H.R. Hertz in 1887.



External photoelectron Ultraviolet radiation

Dr. A. Einstein was able to explain the systematics by invoking the quantum nature of light (Novel Prize in 1921).

$$eU = E_{kin, max} = \hbar \omega - \phi$$

: frequency of the light  $E_{\rm kin, max}$ : the maximum electron kinetic energy : Planck's constant : Work function

U: the retarding voltage

ω

h

 $\phi$ 

#### Principle of photoemission spectroscopy : Work Functions

The **work function** is the minimum energy needed to remove an electron from a solid to a point outside the solid surface (or energy needed to move an electron from the Fermi level into vacuum).



#### Principle of photoemission spectroscopy



#### Principle of photoemission spectroscopy



#### Instruments: Electron Analyzer





## **Advantage of SR-PES**



Photoemission in the soft-x-ray region







# **XPS : Chemical states analysis**

XPS→Elemental specificity, Chemical composition analysis Chemical state analysis (Chemical shift)

The electric potential around core electrons is changed depending on the difference of chemical bonding. Therefore, reflecting the chemical bonding states, the energy position of the core level shifts.





Binding Energy Chemical Shift of Li 1s core level.





## Analysis for high-k ZrO<sub>2</sub> gate



## **UPS: Valence Band Spectra**

UPS  $\rightarrow$  Direct determination of the density of states





# **Thickness Dependence of SrRuO**<sub>3</sub>



## **Advantage of SR-PES**



#### Probing depth

Photoemission is a surface sensitive prove.



The escape depth in the soft x-ray region is ranged from 1 to 10nm. Thus, we studies the surface states of solid.

#### Surface sensitivity

Photoemission is one of the best prove to study the electronic structure at the surface and interface.

The intensity of photoelectrons is decade as a function of  $\exp(-d /\lambda \cdot \chi_{00}\sigma\theta)$ . Therefore, we are able to extract the surface and/or interface components by changing the photon energy (kinetic energy of photoelectrons) and the angle between the incident light and the normal of the sample surface.



# Depth profiling using angle dependent XPS



## **Advantage of SR-PES**



#### High brilliance and resolution: High-throughput and precise characterization



# Application to the high-throughput characterization for devices







# **Beam Line 2C: For High-resolution XPS**





Manipulator

Laser Molecular Beam **Photoemission Chamber Epitaxy Apparatus** (two-axial rotating stage) SR **Preparation Chamber** @KEK-PF BL-2C

> High resolution photoemission analyzer VG-Scineta SES2002

#### Energy-band offsets in high-k materials



Evaluation of the valence band maximum by photoemission

#### X-ray absorption spectroscopy (XAS)



Measure the sample current (intensity of emitted electrons) by changing the photon energy.



#### X-ray absorption spectroscopy (XAS)



#### Energy-band offsets in high-k materials



Evaluation of the valence band maximum by photoemission

## Resistance Changes by Application of Pulse Volatage

Resistance switching behavior in metal/oxide/metal structures



While various RS mechanisms have been proposed, the mechanism have not been fully understood yet.

# Possible Mechanism for ReRAM

#### Interface type



# Chemical states at the interface

# Photoemission spectroscopy

# Characteristics of Pt/Ta<sub>2</sub>O<sub>5-d</sub>/TaO<sub>x</sub> ReRAM Device



Bi-polar type resistance switching

Z. Wei et al., IEDM Tech. Dig. 293-296 (2008).

### Device Structure for HXPES Measurements (Fablication Process)



# Hard X-Ray PES (BL47XU@SPring-8)





## Change in Chemical States at On and Off States: Redox Reactions



The intensity of reduced components changes with resistance switching.

## Change in Chemical States at On and Off States: Redox Reactions



The intensity of reduced components changes with resistance switching.

## Change in Chemical States at On and Off States: Redox Reactions



The intensity of reduced components changes with resistance switching.

#### Chemical Changes of Ta<sub>2</sub>O<sub>5-d</sub> Asociated with Resistance Changes



Redox reaction at the interface induced by applicaton of pulse voltage is indispensable for ReRAM operation.

# Summary

Photoemission spectroscopy combined with synchrotron radiation is powerful experimental technique to study the surface and interface electronic structures of devices.

| Valence band spectra       | Density of states                              |
|----------------------------|------------------------------------------------|
| (X-ray absorption spectra) | Valence band maximum (Conduction band minimum) |
| C                          |                                                |

Core level spectra

Chemical compositoin analysis Chemical state analysis

Direct observation of electronic structures. "Simple is the best"