

SESAME/JSPS School

Protein Crystallography (PX)

Noriyuki Igarashi (Photon Factory, IMSS, KEK, Japan)

Amman(Jordan) on Nov 14, 2011

The Worldwide Protein Data Bank (wwPDB)

Scheme of protein crystallography

Expression & Purification

Functional analysis

To See Objects,

Light is scattered from an object in all directions. A condensing lens (e.g., eye lens, camera, microscope, or telescope) collects the scattered light and focuses it on a screen (the retina in the case of human being). This creates an image of the object.

X-rays are necessary for smaller objects (at atomic resolution). However, lenses for X-rays do not exist, therefore one cannot create an X-ray image.

Scattering and Diffraction

Periodic formation of protein molecules

This is two-dimensional arrangement. If this formation is three-dimensional, it is CRYSTAL.

What kind of images come from a periodic structure ?

X-ray detector

What kind of images come from a periodic structure ?

X-ray detector

Periodic structure gives periodic diffraction pattern.

Elastic scattering by two elements

Electromagnetic field vibrates electrons in a material, which give scattering with same wavelength.

Scattering by two elements

Wave can be expressed on a complex plane

Positive interference

Negative interference

Scattering by two elements

Optical Path difference= $s_1 \cdot r - s_0 \cdot r = (s_1 - s_0) \cdot r$

Phase difference = $2\pi (s_1 - s_0) \cdot r / \lambda$ = $2\pi (k_1 - k_0) \cdot r$

 $(s_i/\lambda = k_i, s_i \text{ is an unit vector, } \lambda \text{ is wavelength})$

Equation of wave function and sum of waves

Wave from two elements can be explained by multiply of two vectors on a complex plane

Phase differences = distance between elements from a direction

Multiply of waves

Multiplied wave from all molecular elements is expressed as,

 $F(k) = \sum \rho(r_i) \cdot e^{2\pi i k \cdot r i}$

Structure factor

Diffraction image is a convolution of scattering pattern of a motif and periodic function. Single motif

Diffraction image is a convolution of scattering pattern of a motif and periodic function.

Two translated motifs

Diffraction image is a convolution of scattering pattern of a motif and periodic function.

2x4 translated motifs

Diffraction image is a convolution of scattering pattern of a motif and periodic function.

5x3 translated motifs

Scattering pattern is same as single motif. BUT, the diffraction spots are positioned according to the periodic formation of motifs.

diffraction pattern & Fourier component

diffraction pattern & Fourier component

Summation of all waves (Fourier synthesis) can reconstruct the object, like computer tomography (CT)

$$\rho(x, y, z) = \sum_{h} \sum_{k} \sum_{l} \mathbb{F}_{hkl} e^{-2\pi i (hx + ky + lz)}$$

Structure factor
$$F(k) = \int \rho(r) e^{2\pi i \, k \cdot r} \, dr$$

Electron density $\rho(r) = \int F(k) e^{-2\pi i \, k \cdot r} \, dk$

F(k) and $\rho(r)$ have a relationship of Fourier transformation.

Atomic scattering
$$f(k) = \int_{\text{atomic}} \rho(r) e^{2\pi i k \cdot r} dr$$

factor
Using this,
Structure factor $F(k) = \sum_{j} f_{j} e^{2\pi i k \cdot r_{j}}$

The structure factors can be calculated by molecular coordinates. Consistency between the calculated F (Fcalc) and the observed F (Fobs) indicates a reliability of the structure.

phase

Importance of Phase

The phase of the structure factor contains the main information about the shape of the molecule.

resolution & electron density map

4,5-diamino-2-chloropyrimidine

Resolution and electron density map

Movie from http://ucxray.berkeley.edu/~jamesh/movies/

- < 1.0 A: Hydrogen atom can be detected.
- < 2.5 A: Side chains can be easily detected.
- > 4.0 A: Detection of side chains is very difficult.

X-ray crystal structure analysis

electron density map

Fourier transformation (requires phase information) measure positions and intensities of all diffraction spots

diffraction data

Electron density and molecular model

We can obtain only electron density map from diffraction experiments because X-rays are diffracted by electrons but not by atomic nucleus.

Based on the electron density map, we can build a molecular model.

Scheme of macromolecular crystallography

Expression & Purification

Crystallization

Data collection

Functional analysis

Data analysis

Crystallization of Proteins (vapor diffusion method)

sample drop (protein solution + precipitant)

- precipitant molecules
- water molecules
- protein crystals

Adjustable parameter (such as salt concentration)

結晶のすくい方

実体顕微鏡を覗きながら、ループですくいます。あまり、倍率を上げ過ぎないのがコツ。 倍率を上げ過ぎると、指先の震えが大きく見えるので、かえって操作が難しくなる。

