SESAME-JSPS School 2011

1

PX Beamline

Takashi Kumasaka

- Structural Biology Group, Japan Synchrotron Radiation Research Institute (JASRI) / SPring-8

- Graduate School of Science and Engineering, Kwansei Gakuin University

Contents

- 1: Recent trends in PX
- 2: Theoretical basics for considering PX beamlines (also as prep or review for the tomorrow practice)
 - 2.1: Diffraction data collection & processing
 - -2.2: Phasing / modeling & refinement
- 3: Recent advances in PX beamlines

1: Overview of recent trends in PX

Protein crystal structure and synchrotron

Number of determined structures

Asian contribution

Nowadays, most structures are determined using SOR.

4

Determination of important and complex structures

3G SOR came into this field from 2000, and accelerates large molecule analysis.

Biologically important proteins including membrane proteins:

Calcium pump, Rhodopsin, Bacterial flagella, Drug effilux protein and so forth.

History of development in MX

6

Advances in Protein Crystallography by Synchrotron Radiation

Synchrotron data collection

> effective to not only X-ray measurement but also all other exp. steps 7 in scale down / time reduction / high resolution. 2: Theoretical basics for considering PX beamlines

2.1: Diffraction data collection & processing

Real space vs reciprocal space

Crystallographic lattices between real and reciprocal space

In case of 2D lattice:

If a < b, then $a^* > b^*$

$$a^* \perp b \quad a^* \perp c$$

$$b^* \perp a \quad b^* \perp c$$

$$c^* \perp a \quad c^* \perp b$$

```
1 = 4
```


An example of reciprocal lattice

PDB ID: 1HF4 Egg white lysozyme Space group: $P2_1$ Lattice constant: a = 27.94b = 62.73c = 60.25 $\alpha = 90.0$ $\beta = 90.76$ $\gamma = 90.0$

X-ray diffraction data collection

Essentials in high quality data collection:

Incident X-ray: Intensity, Divergence, Wavelength

Detector: Detection accuracy, Speed, Image resolution

Crystal: Crystalline order, Size, Radiation resistance

Experimental setup

Oscillation method

To record all individual reciprocal spots, the crystal is rotated with a step-width around one axis. The step-width images are processed to obtain a data set.

When a reciprocal points across the Ewald sphere, its intensity profile is recorded on detector.

A series of images

Parameters in oscillation method

Diffraction image processing

Obtain index (hkl) and intensity (*I*) of each diffraction spot In collected from single wavelength & single crystal

Software MOSFLM, XDS (free software) HKL2000, CrystalClear

Steps of image processing

Indexing:Determine parameters incl. lattice const.Integration:Calculating peak intensityScaling:Merging & averaging equivalent reflections

Spot Finding

Find spots and calculate and record its coordinates on detector.

Autoindexing

Using spot positions, deduce possible crystal system and lattice parameters.

Soln	Least Sq	Spacegrp	Bravais	Lattice	a	b	с	Volume	α	β	γ
7	0.23	75	tetrago	P	77.02	77.02	37.44	222091	90.00	90.00	90.00
э	0.20	21	orthorh	С	108.87	108.97	37.44	444181	90.00	90.00	90.00
11	0.23	16	orthorh	P	37.44	77.01	77.03	222090	90.00	90.00	90.00
12	0.04	5	monocli	с	108.87	108.97	37.44	444181	90.00	90.00	90.00
13	0.12	3	monocli	P	37.44	77.01	77.03	222090	90.00	90.13	90.00
13b	0.17	3	monocli	P	37.44	77.01	77.03	222090	90.00	90.13	90.00
14	0.00	1	triclin	P	37.44	77.01	77.03	222090	89.95	89.87	89.90
	Î	La	attice ty	/pe			Lat	tice coi	nstar	nt	

Agreement between observed and calculated spot position

Refinement

Various parameters are optimized using spot positions

orystar-										
	ব্য	All crystal All cell	🔽 Constra	nin unit cell	according	to symmetry	☐ Gor	niometer or	ientation	
	N	All lengths		🔽 All	angles		🖂 All	rotations		
	<u>م</u>	되	지 2	<u>م</u>	I⊽ ß	2	I⊽ Bot1	I⊽ Bot2	I⊽ Bot3	⊽ Mosaicitv
Start	77.02	77.02	37.44	90.00	90.00	90.00	-52.7353	-57.4633	-45.7115	0.11
Last	77.02	77.02	37.44	90.00	90.00	90.00	-52.7353	-57.4633	-45.7115	0.11
Δ	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Result	77.0087	77.0087	37.4263	90.0000	90.0000	90.0000	-52.7466	-57.4508	-45.7226	0.1115
σ	0.0341	0.0341	0.0269	0.0000	0.0000	0.0000	0.0335	0.0203	0.0359	0.1000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Δ/σ	1000000	a second second		A contraction of the second						
Δ / σ Detector	- Freedow						Source			
Δ / σ Detector	ব্য	, All detector All translatio	ons	, भ ज	, Il rotations		Source		A VI	Il rotations
Δ / σ Detector	। ए Trans>	All detector All translatio (TransY	ons I⊽ TransZ/ Dist	, 문 RotZ	Il rotations ⊽ RotX/ Swine	F RotY	- Source		h Rot1	Il rotations
∆ / σ Detector Start	「 マ 下 Trans> 0.5160	All detector All translatio (TransY -0.0387	ons TransZ/ Dist [155.2467	, アーク RotZ 0.0009	Ill rotations	RotY	Source	Wavelengt	₩ P A P A h Rot1	Il rotations Rot2
Δ / σ Detector Start Last	I I I Trans> 0.5160 0.5160	All detector All translatio (TransY -0.0387	ons TransZ/ Dist 155.2467 155.2467	, , , , , , , , , , , , , ,	All rotations RotX/ Swing -0.0121	RotY 0.1902 0.1902	Source Start Last	Wavelengt 0.70850 0.70850	h Rot1	Il rotations Rot2 0.0001 0.0001
Δ / σ Detector Start Last Δ	I I I I I I I I I I I I I I I I I I I	All detector All translatio (TransY -0.0387 -0.0387 0.0000	ons TransZ/ Dist 155.2467 155.2467 0.0000	P A RotZ 0.0009 0.0000	Ill rotations RotX/ Swing -0.0121 -0.0121 0.0000	RotY 0.1902 0.1902 0.0000	Start Last	Wavelengt 0.70850 0.70850 fixed	h Rot1	Il rotations Rot2 0.0001 0.0001 0.0000
Δ / σ Detector Start Last Δ Result	0.5160 0.5160 0.5272	All detector All translatio (TransY -0.0387 -0.0387 0.0000 -0.0232	ons TransZ/ Dist 155.2467 155.2467 0.0000 155.3774	P A RotZ 0.0009 0.0000 0.0000 -0.0284	All rotations RotX/ Swing -0.0121 -0.0121 0.0000 -0.0075	RotY 0.1902 0.1902 0.0000 0.1891	Start Last A Result	Wavelengt 0.70850 0.70850 fixed 0.7085	h Rot1	Il rotations Rot2 0.0001 0.0000 -0.0026
Δ / σ Detector Last Δ Result σ	D.5160 0.5160 0.5272 0.0249	All detector All translatio (TransY -0.0387 -0.0387 0.0000 -0.0232 0.0253	ons TransZ/ Dist 155.2467 155.2467 0.0000 155.3774 0.0573	P A RotZ 0.0009 0.0009 0.0000 -0.0284 0.0174	All rotations RotX/ Swing -0.0121 0.0000 -0.0075 0.0878	RotY 0.1902 0.1902 0.0000 0.1891 0.1002	Source Start Last A Result o	Wavelengt 0.70850 0.70850 fixed 0.7085 fixed	P A P A P A P A P A P A P A P A	Il rotations Rot2 0.0001 0.0000 -0.0026 0.0112

Refinement

mm 0.033	14	degrees	0.3111
Reflections			().
Total	1738	Accepter	d 1618
Rejected	104	Excluded	16
Resolution Min 0.0000	(A) Ma	× 0.0000	Set
Resolution Min 0.0000	(A) Ma	x 0.0000	Set es 100
-Resolution Min 0.0000 Ι / σ Φ [-Rejection li	(A) Ma 5.0000	x 0.0000 Cycl	Set es 100
-Resolution Min 0.0000 I / σ Φ Rejection li X (mm) 0.5000	(A) Ma 5.0000 imits V (x 0.0000 Cycl	Set es 100 Rot. (deg)
Resolution Min 0.0000 (/ σ Φ Rejection li X (mm) 0.5000	(A) Ma 5.0000 imits 0.5	x 0.0000 Cycl mm) 000	Set es 100 Rot. (deg) 1.0000
Resolution Min 0.0000 Ι / σ Φ Rejection li X (mm) 0.5000	(A) 5.0000 imits [0.5 All	x 0.0000 Cycl mm) 000	Set es 100 Rot. (deg) 1.0000

Integration

Integrate diffraction spot profile.

Integration

Integrate diffraction spot profile.

Steps of integration:

- 1. Estimate correct spot positions
- 2. Background estimation
- 3. Fit and integrate by averaged reflection profile

Scaling

Equivalent intensity among symmetrically equivalent reflections

ex. $P2_1$; (x, y, z), $(\overline{x}, y+1/2, \overline{z})$ $I(h \ k \ l) = I(\overline{h} \ k \ \overline{l})$ $I(\overline{h} \ \overline{k} \ \overline{l}) = I(h \ \overline{k} \ l)$

Estimate scale and falloff factor in each plate

Variation of incident intensity, absorption by crystal, etc.

during one data set

Rmerge overall:

Measures the agreement of symmetry related observations of a reflection. Rmerge in the last shell:

Rmerge in the highest resolution shell.

I/sigma:

A measure of the signal to noise ratio.

Signal-Noise Ratio (S/N)

Signal: Diffraction intensity ~ Dose dependent

Noise: Radiation damage ~ Dose dependent Scattering noise ~ Dose dependent

Detector dark noise ~ Time dependent

Detector readout noise ~ Image number dependent

Signal: Diffraction power of crystal Darwin's Formula

$$E(\mathbf{h}) = \frac{I_0}{\omega} \lambda^3 \frac{e^4}{m^2 c^4} \frac{P \cdot L \cdot A \cdot V_x}{V^2} \cdot |F(\mathbf{h})|^2 \cdots$$

 I_0 : Incident intensity, ω : Angular velocity of crystal rotation, λ : Wavelength,

- *e*: Charge of electron, P: Polarization factor (= $(1+\cos^2 2\theta)/2$),
- *L*: Lotentz factor (= $1/\sin\theta$ when spindle x-ray),
- A: Absorption coefficient, V_x: Crystal volume, V: Lattice volume

In case of protein crystal...

- High solvent contents (25 ~ 75%)
- Large unit cell
- > Weak diffraction power ~ Low resolution

Temperature factor, B

Broader electron density (= higher thermal vibration) gives sharper scattering factor, this means it's contribution to higher resolution is smaller.

Debye-Waller factor to atomic scattering factor:

$$e^{-B\frac{\sin^2\theta}{\lambda^2}}$$

$$B = 8\pi^2 \ge \overline{u^2}$$

Average square variation of atomic vibration

Α

Electron density: Resolution and B-factor

Crystal packing ~ molecular vibration ~ resolution

Relationship with B-factor (DWF)

Vibration in solution > Movie

Packing density V_M : $V_M = V_{cell} / Mw_{cell}$ High density (small V_M) > High Rigidity (Kantardjieff & Rupp, 2003)

Packing control by humidity control

- FMS (Free Mounting System)
- > lower humidity around crystal
- > dehydration
- > induce phase transition

(Kiefersauer et al., 2000)

Freedom of rigid body motion p2, C=3 p4, C=2

This measure is also retated to space group occurrence.

- Wukovitz & Yeates. 1995. Nat. Struct. Biol. 2, 1062-7
- http://www.doe-mbi.ucla.edu/~yeates/old_space_group_freq.html 32
- Chruszcz, et al. 2008. Protein Science, 17, 623-632

Resolution and incident intensity

Reduction by radiation damage

Mosaic spread

Protein crystals consist of mosaic pieces.

Any distribution of these orientation enlarging reciprocal lattice points and reduction of peak height.

Spot sharpness depends on crystalline order. ³⁵

Full reflection / Partial reflection

Ewald sphere

Full reflection:
Whole part of spot across the sphere.
> its whole intensity is recorded.
Partial reflection:
Only some part of spot across the sphere.
Its partiality can be estimated from

crystal orientation and mosaic spread (spot width).

Reciprocal

point

36
Reflection overlaps

Longer lattice constant gives narrower spacing of adjacent reflections.

Long axis should be placed along rotation axis.

X-ray detector: 2D detectors for PX

	CMOS	CCD		Amorphous	Silicon		
	CIVIOS	Indirect	Direct	Selenium	Pixel	IP	
Area size (100-400mm)) Multi-element	O ME+FOT	\bigtriangleup cm sq. order) by processing tech.	⊖ ME	Ø	
Resolution (50-100µm)	© Few-200 μm Phosphor	10 - 100 μm FOT&phosphor	© Few μm	Ο 100~200 μm	 ~200 μm	Ο 50 μm~	
Readout Speed	© Sub mSec Continuous readout) Sec		⊖ Sec	© Real time Counting	\bigwedge Min	
Sensitivity	$\triangle \sim \bigcirc$ Phosphor & Window	$\bigtriangleup \sim \bigcirc$ Phosphor		\bigtriangleup	$\bigtriangleup \sim \bigcirc$ Low for high E photon	O	
Noise	△~○ Relatively high readout & dark noise	Successful Cooling Phosphor/FOT/Window		△ Higher noise by polycrystalline	© Counting (counting loss at high dose)	△ Stray light of laser / Loss of fluorescence Capture	
Skew	\odot	△ FOT	© Direct	© Direct	© Direct	○~⊚ Geometry at readout	
Dynamic range	 ∼12bit	○ ~16 bit		 ∼16 bit	$\bigcirc \\ \infty \text{ (Counting)}$	© ~20 bit	
Cost	© Versatile Processing technology	$\bigtriangleup \sim \bigcirc$ Complex system	© Cheap but small	? Expecting Future development	△ Original tech. and monopolistic	© Simple and matured technology 38	

Imaging plate

Plastic X-ray sensitive film Photostimulated luminescence by BaFBr:Eu²⁺

CCD Detector

40

CCD detector system

Area Detector Systems Co. http://www.adsc-xray.com

Hasegawa (JASRI) & Yamamoto (RIKEN) Hamamatsu Photonics

Read out images with a constant frame rate

Hig	h	through	put a	and/or	Fine	slice	data	collection

Specification	Hamamatsu C10158DK	ADSC Q210	-
Scintillator	CsI:TI	Gd ₂ O ₂ S:Tb	-
Pixel size [mm ²]	50 x 50	51 x 51	
Detector area [mm ²]	118.8 x 118.8	210 x 210	
Output data [bits]	14	16	
Dynamic range	6,000	14,100	42
Dead time due to readout	14 msec / pixel	1.1 sec / frame	

Data inconsistency: Radiation damage Bacterial flagelin F41 Crystal @ SPring-8 BL41XU

1st frame

Very Thin Crystal (≒10μm)

15min.

25*min*.

Total Flux at Sample \Rightarrow **10**¹³ photons/sec/mm²

43 F.A. Samatey, K.Imada, S.Nagashima, K.Namba (ERATO)

Radiation damage in real space

electron density at 1.6 Å resolution

Data set

Cryocrystallographic technique

Prevent thermal degradation of sample diffusion and reaction of free radicals at cryogenic temperature (30 - 100 K) using cold N₂/He gas stream

Sample Mount Pin & Cryoloop

Interaction between photon and protein

Primary Effect

- Absorbed photon energy > Temperature increment
- Photoelectron formation
- > Chemical reduction / Reactive radical formation

X-ray dosedependentTemperature / Timeindependent

Secondary Effect

Chemical reaction by free radicals

X-ray dose, temperature / time dependent

Photon-electron interaction

PE: Photoelectric absorption, R: Thomson (Reyleigh) scattering, C: Compton scattering

Radiation induced temperature increment under cryogenic condition

Kuzay et al. Acta Cryst. (2001). D57, 69-81

Radiation induced formation of reactive radicals (1)

Water

H ₂ O	\xrightarrow{hv} H ₂ O ⁺ + e ⁻
$H_2O^+ + H_2O$	\longrightarrow H ⁺ + OH •
e^- + H_2O	\longrightarrow H ₂ O ⁻
$H_2O - H_2O$	\longrightarrow H • + OH-
H ₂ O	$\underline{h\nu}$ \underline{H}^{\bullet} + \underline{OH}^{\bullet}

Radiation induced formation of reactive radicals (2)

Disulfide bridge

 $\stackrel{h\nu}{\longrightarrow} (p)-CH_2SS^{\bullet+}CH_2^{-}(p) + e^{-1}$ (p)-CH₂SSCH₂-(p) $(p)-CH_2SSCH_2-(p) + OH \bullet \longrightarrow (p)-CH_2SS \bullet^+ CH_2-(p) + OH \bullet$ (p)-CH₂SS^{•+}CH₂-(p) + OH⁻ \longrightarrow (p)-CH₂SOH + (p)-CH₂S[•] (p)-CH₂SSCH₂-(p) + OH^{\bullet} (p)-CH₂SOH + (p)-CH₂S \bullet Cysteine \longrightarrow (p)-CH[•]₂ + SH⁻ $(p)-CH_2SH + e^{-}$ (p)-CH₂SH + \underline{H} • \longrightarrow (p)-CH[•] + H₂S

Burmeister, Acta Cryst. (2000). D56, 3285341

Radiation induced formation of reactive radicals (3)

Aspartate & Glutamate

(p)-CH ₂ CH ₂ COO ⁻	hv →	(p)-CH ₂ C• + H ₂ COO + e^{-}
(p)- $CH_2C \bullet + H_2COO^-$		(p)- $CH_2CH_2^{\bullet} + CO_2$
Tyrosine		
(p) - $CH_2C_6H_4OH$	<u>hv</u>	(p)-CH ₂ C ₆ H ₄ OH •+ e ⁻
(p)- $CH_2C_6H_4OH^{\bullet}$ +		$(p) - CH_2C_6H_4O^{\bullet} + H^+$
Methionine		

(p)- $CH_2CH_2SCH_3 + 2\underline{H} \bullet \qquad (p)-CH_2CH_3 + CH_3SH$

Burmeister, Acta Cryst. (2000). D56, 3285341

Dose limit

Estimated dose limit for ionizing radiation

 1.3×10^{17} keV/mm^3 1×10^{16} photon/mm²@12.4keV(Henderson, R. (1990). Proc. R. Soc. London Ser. B, 241, 6-8.) 4×10^{17} keV/mm^3(Gonzalez, A., Nave, C. (1994). Acta Cryst. D 50, 874-877.) 5×10^{16} photon/mm²@12.4keV(Sliz, P.,Harrison,S.C.Rosenbaum,G., (2002). Structure, 11, 13-19.)

2.2: Phasing / Modeling & Refinement

Phasing: Crystallographic phase problem Diffraction intensity is only measureable, but its phase information is completely lost.

 $I(hkl) = F(hkl) F^*(hkl)$ $F(hkl) = |F(hkl)| \exp i\alpha$

Solving methods

- 1. Direct method
- 2. Isomorphous replacement (IR)
- 3. Molecular replacement (MR)

|F| of (a)

 $|\mathsf{F}|$ of (b) α of (a)

random |F α of (a)

Harker Diagram ~ Structure factor and phase

Isomorphous replacement

Patterson function

Directly calculated from intensity without phase. The function shows self correlation of electron density.

In case of few atoms in cell, their coordinates are determined from Patterson function.

Characteristics of Patterson function

- 1. Even function: $P(\mathbf{u}) = P(-\mathbf{u})$
- 2. Screw axis in real space > Rotation axis
- 3. Harker line / Harker section $P2_1$: (*x*, *y*, *z*), (-*x*, *y*+1/2, -*z*) (*u*, *v*, *w*) = (-2*x*, 1/2, -2*z*)
- 4. Correspond to mathematical convolution

$$f(t) * g(t) = \int_0^t f(t - \tau)g(\tau)d\tau$$

f(t)*f(t): Self correlation f(t)*g(t): Cross corr.

Harker Section

Patterson Peaks p(u,v,w)

2-1:
$$\frac{1}{2}$$
-2x, -2y, $\frac{1}{2}$
3-1: $\frac{1}{2}$, $\frac{1}{2}$ -2y, -2z
4-1: -2x, $\frac{1}{2}$, $\frac{1}{2}$ -2z
3-2: 2x, $\frac{1}{2}$, $-2z$ - $\frac{1}{2}$
2-4: $\frac{1}{2}$, $-\frac{1}{2}$ -2y, 2z
4-3: $-\frac{1}{2}$ -2x, $-2y$, $\frac{1}{2}$

2-1: $\frac{1}{2}$ -2x, 2y, $\frac{1}{2}$ 3-1: $\frac{1}{2}$, $\frac{1}{2}$ -2y, 2z 4-1: 2x, $\frac{1}{2}$, $\frac{1}{2}$ -2z 3-2: 2x, $\frac{1}{2}$, $\frac{1}{2}$ +2z 2-4: $\frac{1}{2}$, $\frac{1}{2}$ +2y, 2z 4-3: $\frac{1}{2}$ +2x, 2y, $\frac{1}{2}$

Relationship among Harker peaks

1: (x, y, z) Patterson space (u, v, w)2: $(\frac{1}{2}-x, -y, \frac{1}{2}+z)$ 3-1 $(\frac{1}{2}, \frac{1}{2}-2y, -2z)$, 2-4 $(\frac{1}{2}, -\frac{1}{2}-2y, 2z)$ 3: $(\frac{1}{2}+x, \frac{1}{2}-y, -z)$ 4-1 $(-2x, \frac{1}{2}, \frac{1}{2}-2z)$, 3-2 $(2x, \frac{1}{2}, -\frac{1}{2}-2z)$ 4: $(-x, \frac{1}{2}+y, \frac{1}{2}-z)$ 2-1 $(\frac{1}{2}-2x, -2y, \frac{1}{2})$, 4-3 $(-\frac{1}{2}-2x, 2y, \frac{1}{2})$

79

Anomalous Phasing

Anomalous Effect: Wavelength dependent absorption ~ XANES

Smaller than usual heavy atom effects ↓ Need high quality data

2 Wavelength MAD

Recent trend of isomorphous phasing

82

SAD

|F|: Native | F_{λ} (**h**+)|: Anomalous | F_{λ} (**h**-)|: Anomalous

Phase probability function shows bimodal.

>> Phase improvement by density modification

>> High precision data collection

Radiation damage and MAD data set Effect of data taking way

Comparison with dispersive Patterson maps

Harker section ($w = \frac{1}{2}$)

Phasing Statistics (20 - 1.7 Å)

Data		Cho1			Cho2	
	Remote	Peak	Edge	Remote	Peak	Edge
R _{Cullis} (iso)#		0.82 / 0.84	0.83 / 0.88		0.78 / 0.83	0.76 / 0.86
R _{Cullis} (ano)	0.94	0.91	0.99	0.94	0.91	0.99
Lack of closure (iso) [#]		8.9 / 14.0	8.1 / 12.5		11.4 / 14.7	10.3 / 16.8
Lack of closure (ano)	8.98	16.56	7.32	8.11	15.91	6.37
Figure of merit	0.6057			0.6167		
Phasing power#		1.22 / 0.81	1.19 / 0.82		1.40 / 0.90	1.38 / 0.89
< <u>\</u> >*	44.2	(33.9)		47.8	(39.4)	

#: Acentric and centric values before and after slash.

*: Phase difference against phases calculated from refined model Parenthesis show the values within the range of 10-2.5 Å.

Phase difference against true phase

88

Radiation damage and MAD data set Quality of electron density map

Cho1 (Trichromatic)

Cho2 (Conventional)

Tyr 165 (Chitosanase A-chain) 1.7 Å MAD phase (without any phase modification)

Molecular replacement

Known determined structure

Unknown but probably similar structure

thanks to Gar

ae from http://px.cryst.bbk.ac.uk/sample/molep.htm

How to pack the molecules into the cell ? > 6-D search

To solve unknown structure, a known structure is used as a approximation.

The known structure will be selected by sequence similarity. Highest sequence similarity might gives highest structural similarity.

Patterson function Intramolecular Intermolecular vectors

Euler angles, $\alpha \; \beta \; \gamma$

Rotation axis:
$$z''$$
 x' z $\begin{pmatrix} \cos y & -\sin y & 0 \\ \sin y & \cos y & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \beta & -\sin \beta \\ 0 & \sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix}$ Order 0 0 1 0 0 1 0 $\cos \beta$ 0 0 1 0 0 1 3 2 1

92

An example of rotation function

α	β	γ	x	У	z	Correlation Coefficient	R-factor
30.37	54.61	351.97	0.000	0.000	0.000	16.0	48.9
59.63	125.39	171.97	0.000	0.000	0.000	16.0	48.9
27.57	41.41	20.51	0.000	0.000	0.000	9.2	51.1
62.43	138.59	200.51	0.000	0.000	0.000	9.2	51.1
17.43	98.67	334.32	0.000	0.000	0.000	7.2	51.7
72.57	81.33	154.32	0.000	0.000	0.000	7.2	51.7
41.73	139.11	197.95	0.000	0.000	0.000	7.7	52.1
48.27	40.89	17.95	0.000	0.000	0.000	7.7	52.1
81.84	98.18	226.67	0.000	0.000	0.000	8.2	51.6
8.16	81.82	46.67	0.000	0.000	0.000	8.2	51.6

Modeling & refinement of structure

Modeling: Construct molecular model to fit obtained electron density using interactive molecular graphics software or automated modeling software.

Refinement: Optimization of observed and calculated F data by shifting atomic coordinates.

R-factor: Crystallographic Reliability-factor

R1= Σ ||Fo|-|Fc(**r**)||/ Σ |Fo|

 $wR2 = (\Sigma w(|Fo|^2 - |Fc(\mathbf{r})|^2)^2 / \Sigma w(|Fo|^2)^2)^{1/2}$

Cross validation of R-factor (R_{free})

Refinement of structural model

Unrestraint refinement

 Only using R-factor refinement
 in case of ultra-high resolutions (0.8 A or higher)

 Restraint refinement

 Coupled with molecular mechanics
 Model validity is also guaranteed by low energy
 ~ structural stability

Target function

$$E = E_{\text{chem}} + w_{\text{xray}} E_{\text{xray}}$$
$$E_{\text{xray}} = \sum_{\mathbf{h}} |F_{O}(\mathbf{h}) - kF_{C}(\mathbf{h})|^{2}$$

Basics of molecular mechanics (MM)

Energy calculation of atomic bonds and interactions by classical mechanics.

3: Recent advances in PX beamlines

MX Beamlines at SPring-8

Beamlines and User Accessibility

- 1. Public Beamlines (BL41XU, BL38B1; JASRI) Academic use + Proprietary use (incl. Mail-in service)
- 2. Contract Beamline (BL44XU; Osaka Univ.) Academic use

Contract Beamline (BL24XU; Hyogo Pref.) Academic use + Partially opened to proprietary use

- 3. RIKEN Beamlines (BL26B1&B2, BL32XU; RIKEN) RIKEN's academic research + Partially opened to public use (20%)
- Pharmaceutical Industrial Beamline (BL32B2; PcProt)
 Fully operated for propietary use by the members of Japan Pharmaceutical Manufacturers Association (JPMA)

100

Synchrotron MX

Brilliant synchrotron radiation facilitates MX research

1. For cutting edge research

High precision data collection for Micro-crystal & Large unit-cell samples

2. For structural genomics approach

Automated and rapid data collection for High throughput screening

Get more structures and details

RIKEN Targeted Proteins beamline BL32XU for Targeted Proteins Research Program (TPRP)

- What is TPRP ?
 - Grant: A national project promoted by MEXT, Japan
 - Aims: To reveal the structure and function of proteins that have great importance in both academic research and industrial application.
 - Research Themes:

Targeted Proteins Research:

Fundamental Biology / Medicine & Pharmacology / Food & Environment Technology Development:

Protein Production / Structural Analysis / Chemical Regulation / Information Platform

- Beamline Construction
 - Kunio Hirata, Masaki Yamamoto et al. (RIKEN)

Development of micro-beam beamline

X-ray crystallography of proteins related to human disease and aging.

Standard **Micro-crystal Current Limit** >50µm 20~30µm <10µm 50µm 50um 50µm **Target Crystals Target Beam Size** Current • Beam Size 30×30 **1X1** μm^2 120 **10**⁹ • Flux density >10¹⁰ photons/sec./µm² -1.500 -1.420 -1.340 -1.260 -1.180 -1.100 0.800 inar 0.880 105

Micro-beam optimized for Micro-crystal

Beam profile of SPring-8 BL41XU

R&D target for Micro-crystallography

Micro-crystal

- Small size crystal (<10mm)
- Weak signal (10⁶copies)

Maximize signal-to-noise ratio

- Generate micro-beam
- Optimize experimental equipments

Generate Micro-beam

- Stabilize micro-beam
- Optimize beam size

Optimize experimental equipments

- Crystal handling
- High-precision goniometer
- Reduce background noise
- High-sensitive detector

Design concept of BL32XU

- 1. Brilliant source
- 2. Simple components
- 3. Focusing X-rays with large magnification factor
- 4. Changeable beam size at sample position

Beamline components

Hybrid in-vacuum undulator

Front end

High precision double crystal monochromator sample

K-B focusing mirrors

Co-axial sample camera

High precision goniometer

High efficient CCD detector

EEM-mirrors for 1 um focusing

Designed mirror surface shape

Kirkpatrick-Baez Mirror

Mirror shape :	Elliptical
Mirror length :	400 mm
Energy range :	8-20 keV
Mirror material :	SiO ₂
Mirror surface :	Pt-coated
Glancing angle :	3.5mrad

Design of focusing optics

- Virtual light source is TC-Slit (located at 36m upstream of 1st mirror)
- Pt-coated elliptical mirrors with K-B (Kirkpatrick-Baez) configuration
- Magnification factors: 26 in vertical, 40 in horizontal
- Beam divergence at sample position < 2 mrad
- Available X-ray energy range: 8 20 keV, especially high-flux at 12.4 -13.8keV

Achieved beam size (2009/11/27)

Focused photon flux : 6.2x10¹⁰ photons/sec The smallest & highest flux density in the world

Micro-crystal diffractometer

Air-bearing goniometer

High-precision spindle axis with air-bearing unitHi-speed rotation useful for fast centering, inverse beam geometry etc.

Eccentricity < 0.7μm/360° (KOHZU PRECISION Co., LTD.)

Tentative diffractometer setting

Focusing mirror -> Ion chamber -> Shutter -> Co-axial sample camera -> Collimator -> Back light -> Beam stopper

The first crystal onto the $1\mu m$ beam

The first diffraction image (09/12/04)

Larger beam divergence did not badly affect diffraction profiles

Data collection limit by crystal size

Formula of diffraction power

$$S = (F_{000} / V_{\text{cell}})^2 \times \lambda^3 \times V_{\text{cryst}}$$

We collect a 2 Å resolution data from 2 um lysozyme crystal.

BL32XU open the new field of Protein micro-crystallography