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2. Characteristics of Synchrotron Radiation 

2.1 Introduction 
The radiation in general is characterized by the following terms: spectral range, photon flux, 

photon flux density, brilliance, and the polarization. The photon flux is the overall flux collected by 
an experiment and reaching the sample, the photon flux density is the flux per area at the sample 
and the brilliance is the flux per area and opening angle of the source. In the following chapter the 
formulas for the calculation of these terms of the synchrotron radiation emitted from a stored beam 
in the bending magnet, wiggler and undulator are compiled.   

Many authors have established the theory of synchrotron radiation. Today most of the 
calculations are using the results of the Schwinger theory. According to this theory the shape and 
intensity within the radiation cone emitted by a radial accelerated relativistic electron beam is given 
by: 
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where: 

� � photon flux (number of photons per second) 
� � observation angle in the horizontal plane 
� � observation angle in the vertical plane 
� � fine structure constant = (1/137) 
� � electron energy / mec

2 (me = electron mass, c= velocity of light)  
� � angular frequency of photons ( � �SKRWRQ�HQHUJ\� � � 

I =   beam current 
e =  electron charge = 1.601*10-19 coulomb    
y =  � c = / c ( c� �FULWLFDO�IUHTXHQF\� ��

3
F���  

c =  FULWLFDO�SKRWRQ�HQHUJ\�� ��KF 3
�� � 

� � radius of instantaneous curvature of electron trajectory = E/ecB 
LQ�SUDFWLFDO�XQLWV�� �P�� �������
�(�*H9���%�7� 

   c =     speed of light ( = 2.9979*108 m/s) 
E =  electron beam energy 
B =  magnetic field strength 

c =  K c�> c(KeV) = 0.665*(E/GeV)2*(B/T)] 
X =  ��QRUPDOL]HG�DQJOH�LQ�WKH�YHUtical plane) 
 =   y(1+X2)3/2/2   

 
The subscripted K’s are modified Bessel functions of the second kind. Equation (2.1) is the 

basic formula for the calculation of the of the characteristics of the synchrotron radiation. The 
polarization is given by the two terms within the square brackets.  

2.2 Radiation from a Bending Magnet 
The photon flux of the synchrotron radiation from the bending magnet is given by the 

integration of Equation (2.1) over the whole vertical angle. In the horizontal plane the emitted cone 
is constant and therefore the photon flux iV�SURSRUWLRQDO� WR� WKH�DFFHSWHG�DQJOH� � LQ� WKH�KRUL]RQWDO�
plane: 
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According to Equation (2.2), the photon flux is proportional to the beam current, the energy 
and the normalized function G1� � c) which depends only from the critical photon energy. This 
function is given in Figure (2.1) and is illustrating that the spectrum of the synchrotron radiation 
flux is a continuous one with a maximum at 1/3 of the critical photon energy. 
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Figure 2.1: The normalized synchrotron radiation function G1. 

The flux of the synchrotron radiation from the 
bending magnet is proportional to this function. 

 
 The fluxes emitted from a stored beam in a 1 GeV/1.87Tesla and 2 GeV/1.35Tesla storage 
ring are presented in Figure (3.3). According to the higher energy, the flux emitted from a 2 GeV 
PDFKLQH� LV� D� IDFWRU� RI� �� KLJKHU�� 7KH� FULWLFDO� SKRWRQ� HQHUJLHV� RI� ERWK� PDFKLQHV� DUH� c= 1.24 
(1GeV/1.87T) and 3.59 KeV (2GeV/1.35T). The spectrum for the 2 GeV storage ring is roughly 
one order of magnitude broader, although the critical photon energy of the machines differ only by 
a factor 3.   
���������7KH�LQWHQVLW\�RI�WKH�V\QFKURWURQ�UDGLDWLRQ�LQ�WKH�PLGGOH�RI�WKH�UDGLDWLRQ�FRQH�� � ���DQG� � ����

is given by the following formula (central intensity): 
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Because the radiation cone is getting narrower with higher energy, the central intensity is 
proportional the square of the energy. The spectral dependency is given by the normalized 
synchrotron function H2(y) = H2� � c). This function is presented in Figure (2.2). It is also 
continuous and has a maximum near the critical photon energy.  
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Synchrotron Radiation Function H2(y)
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Figure 2.2: The normalized synchrotron radiation function H2. The brilliance of 

the synchrotron radiation from the bending magnet is proportional 
to this function. 

 
From the definition of the flux (Equation (2.2)) and the central intensity (Equation (2.3)) the 

vertical opening angle of the synchrotron radiation is given by: 
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The opening angle of the synchrotron radiation for a 2 GeV electron beam is presented in 
Figure (2.3): 
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Figure 2.3: Opening angle of the synchrotron radiation emitted 

from a 2 GeV electron beam 
 
The opening angle of the radiation from 1 and 2 GeV machines are given in Figure (3.4). 
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The opening angle at the critical photon energy (y ��RU� � � c) is, according to Equation (2.4): 
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For a 2 GeV machine the corresponding angle is 0.166 mrad. 
The brilliance of the synchrotron radiation from a bending magnet is given by the central 

intensity divided by the cross section of the beam: 
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and 

x�� y)   is the electron beam emittance in the horizontal (vertical) plane, 
[�� \��  is the electron beam beta function in the horizontal (vertical) plane, 
x   is the dispersion function in the horizontal plane, 
E   is the rms value of the relative energy spread, 
y   is a Twiss parameter in the vertical plane, 

   is the rms value of the radiation opening angle, 
r ��� )  is the diffraction limited source size,     
   is the observed photon wavelength 

 
At a photon energy of 10 KeV the corresponding photon wavelength is 0.124 nm and the 

opening angle is smaller than 0.1 mrad (see Figure (2.3)). Both figures result in a diffraction limited 
VRXUFH�VL]H�RI� r ����� P��7KH�WHUP� y� �JLYHV�D�FURVV�VHFWLRQ�RI��� P�DQG� y y�

2 has a value 
between 1*10-3 and 4*10-3. These factors are at least one order of magnitude smaller than the beam 
FURVV�VHFWLRQ� x�DQG� y, hence the overall cross sections in Equation (2.7) reduces for the storage 
ring SESAME to: 
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and the brilliance of the synchrotron radiation from the bending magnet of a non diffraction limited 
light source is given by: 
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 The brilliance of a 1 and 2 GeV beam (400 mA) are given in the Figures (3.7) and (3.8). The 
critical photon energies of the different versions are: SE_1_I = 1.24 KeV, SE_2_I = 4.00 KeV, 
SE_3_I = 4.00 KeV and SE_4_I = 3.60 KeV. From both figures it follows that the maximum 
brilliance is around the critical photon energy. Because of the higher energy the brilliances of the 2 
GeV beam are one order of magnitude broader than those for a 1 GeV beam. According to the 
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smaller cross sections (emittances) the brilliances of the versions SE_3_I and SE_4_I are of a factor 
up to 50 higher than those from the 1 GeV beam (version SE_1_I ).  

2.3 Radiation from a Wiggler 
The wiggler is a special magnet with alternating directions of the magnetic field and the 

trajectory of an electron beam through a wiggler is like a snake as shown in Figure (2.4), it is a 
sinusoidal oscillation. The trajectory is determined by the maximum slope X’ and by the maximum 
amplitude X0. Both expressions are given by Equation (2.10). 
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In the “Green Book” and in this “Proposal” different wigglers are foreseen: In the “Green 

Book” a 7.5 Tesla super conducting wiggler and within this “proposal” a normal conducting one 
with a field of 2.25 Tesla. The data of these devices are summarized in the Table (2.1): 

Table 2.1: Data’s of the wigglers foreseen in the “Green Book” and in this “Proposal”  

   B0 ��� W   NW     L   K     X0     X’ 
Green Book 7.50 T 140 mm   6.5 0.91 m 98.1   1.1 mm 50 mrad 
Proposal 2.25 T 80 mm   30 2.4 m 16.8 0.055 mm 4.3 mrad 
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Figure 2.4: Trajectory of an electron beam in a wiggler with a period length of  9 cm 

 
The photon flux as well as the central intensity of the radiation emitted by the wiggler is the 

same as from the bending magnet but by a factor Np more intensive, where Np is the number of 
poles within the wiggler. The photon flux emitted from the wigglers beams for the “Green Book” 
and this “Proposal” are presented in the Figures (3.9) and (3.12). Both wigglers have roughly the 
VDPH�FULWLFDO�SKRWRQ�HQHUJ\�� c�*UHHQ�%RRN�� �����.H9�� c(Proposal) = 6.0 KeV) and therefore the 
spectrum of the flux is roughly the same.  

For the intensity of the photon flux the amplitudes X0 of the beam oscillations within the 
wigglers have to be considered (see Table (2.1)). Because of the amplitude of 1.1mm in the “Green 
Book” design the spot sizes in the wigglers have a difference of 2.2 mm and it is not possible to 
collect both sources within one beam line. Therefore the useable flux from the wiggler for an 
experiment is only proportional to half of the number of the poles. For the wiggler in this 
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“Proposal” it is with an amplitude of 5�� P� FRPSOHWHO\� GLIIHUHQW�� KHUH� DOO� SROHV� KDYH� WR� EH�

considered. All these arguments are included in the Figures (3.9) and (3.12), with a result, that the 
flux from the 2 GeV stored beam is of a factor 18 higher than that from the 1 GeV one.   

The calculation of the brilliance of wigglers needs to take into account the depth-of-fields, i.e. 
the contribution to the apparent source size from different poles. The expression for the brilliance of 
wigglers is: 
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where:                                           
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x�� ¶x�� y�DQG� ¶y are the rms transverse size and angular divergence of the electron beam at 
WKH�FHQWHU�RI�DQ�LQVHUWLRQ�VWUDLJKW�VHFWLRQ�� x� � y = 0). This means that the brilliance of the wiggler, 
calculated according to Equation (2.11), is normalized to the middle of the straight section.  

The exponential factor in Equation (2.11) arises because the wigglers have two points, 
separated by 2*X0 according to Equation (2.10) and indicated in Figure (2.4). (The influence of this 
two source points upon the photon flux has been discussed before.) The sum in Equation (2.11) 
goes over all poles of the wigglers. As already discussed under the radiation of the bending magnets 
WKH�IDFWRU�� y� ��LV�DW�OHDVW�D�IDFWRU����VPDOOHU�WKDQ�WKH�FURVV�VHFWLRQ� y and can be neglected. The 
expression zn
 y’ is the increase of the source size from the center of the insertion device. 

Instead of normalizing the brilliance to the center of the straight section, the cross sections of 
WKH�EHDP�VL]H� x�Q��DQG� y(n) at the position of the different poles can be used, with the result that 
the expression for the brilliance will be simpler:  
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The inverse of the dominator of Equation (2.13) for different beta functions is presented in 
Figure (2.5). For high beta functions (4 to 22 m/rad) the cross section of the beam doesn’t change 
very much and the brilliance is according to Figure (2.5) proportional to the length of the wiggler.  
For small beta functions (0.05 and 0.4 m/rad) the brilliance of the wiggler will saturate, because the 
cross section of the beam in the outer parts of the wiggler gets high and the contribution to the 
brilliance is small and can therefore be neglected. According to Figure (2.5) the optimized betatron 
functions should be in the range of 0.6 to 1.0 m/rad and the length should be in the range of 2 to 3 
m. 

The brilliance of the radiation emitted from the wigglers within the “Green Book” and this 
“Proposal” are presented in the Figures (3.11) and (3.14). Figure (3.14) is that one with the “mini-
beta-sections”. Again, because of the same critical photon energies the emitted spectrum covers the 
same range. However, because of the different cross sections of the beam the intensity is different. 
For the versions SE_3_1 and SE_4_1 the intensity is roughly the same, but in comparison to 
version SE_1_2 they have a factor of 40 higher intensity. The version SE_2_1 is of a factor 5 more 
intensive. The picture changes completely by introducing “mini-beta-sections”. The brilliance of the 
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wiggler radiation for this version is presented in Figure (3.14), with the result that the brilliance of 
the version SE_4_2 is of a factor 400 higher than that from the version SE_1_2.    
 

Optimization of Wiggler Length

0

1000

2000

3000

4000

5000

6000

0 0.5 1 1.5 2 2.5

Half Wiggler Length (m)

P
ro

p
o

rt
io

n
al

 t
o

 B
ri

lli
an

z
Beta = 0.05 Beta = 0.1 Beta = 0.2 Beta = 0.4 Beta = 0.6

Beta = 1.0 Beta = 2.0 Beta = 4.0 Beta = 10.0 Beta = 22.0

 
Figure 2.5: Dependency of the brilliance of wiggler radiation upon the beta functions in the 

middle of the wiggler. The proportionality is given by the sum of all inverse cross 
sections at the different poles of the wiggler. 

 
In order to optimize the brilliance of the wiggler radiation the beta functions in the middle of 

the straight sections should be as small as possible (mini-beta-section) and the length of the wiggler 
has only to be around 2 m, because the outer regions of the wiggler don’t have any significant 
contribution to the brilliance.  

2.4 Radiation of an Undulator 
7KH� RSHQLQJ� DQJOH�  of the synchrotron radiation from the bending magnet at the critical 

SKRWRQ�HQHUJ\� c�LV�DFFRUGLQJ�WR�(TXDWLRQ�������URXJKO\������� �RU��� ��7KH�PD[LPXP�VORSH�RI�WKH�

HOHFWURQ� WUDMHFWRU\� LQ� D� ZLJJOHU� LV� ;¶�  � .� �� )RU� YDOXHV� RI� .� LQ� WKH� UDQJH� EHWZHHQ� �� WR� �� WKH�

deflection angle in a wiggler is within the opening angle of the synchrotron radiation. For this 
special case the radiation from different periods interferences coherently, thus producing sharp 
peaks with the result of completely different characteristics. This radiation is called undulator 
radiation and the corresponding insertion devices are undulators. 

The undulator emits radiation only at characteristics photon energies: 
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where: 

n =   Harmonic number ( n = 1, 3, 5, 7, ….. ) 
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N =   Number of periods 
Und =  Period length of the undulator 

K =   Deflection parameter (see Equation (2.10)) 
 
The opening angle of the undulator radiation cone is: 
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For the illustration of the characteristics of the undulator radiation, the following example 
shall be used:  

(� ���*H9�� Und = 40 mm, K = 2 and N = 50 

KeV316.01 =ε  and KeV85.29 =ε  

eV32.61 =∆ε      and eV32.69 =∆ε  

mradr 0443.0)1(’ =σ    and mradr 0148.0)9(’ =σ  
 

Qn-Function for the Undulator - Radiation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6

k-Value

Q
-V

al
u

e

n=1 n=3 n=5 n=7 n=9

 
Figure 2.6: The undulator radiation function Qn(K) for the calculation of the radiation flux 

 

The flux of the undulator radiation within the cone of the harmonics is given by (in practical 
units): 

)()/(10432.1),( 14 KQAINKn nUndUnd ⋅⋅⋅⋅=Φ [Photons/(s 0.1%BW)]   (2.16) 

According to Equation (2.16) the flux of the undulator radiation is proportional to the number 
of periods, the current and the function Qn(K). It is independent of the energy of the electrons. The 
function Qn(K) is given in Figure (2.6) for the harmonics n =1 to n= 9. To reach a high photon flux 
(also for higher harmonics), the deflection parameter K should be in the range of 2 to 3.  
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         Table 2.2: Photon energies and fluxes of an undulator installed at SESAME 

              N         1        3        5         7       9 
       c [KeV]     0.316    0.948     1.58     2.212    2.88 
� Und [Pho/s 0.1BW  2.25*1015  1.23*1015  7.15*1014  4.29*1014  2.86*1014 

 
 The fluxes of the different harmonics and the corresponding photon energies are summarized 
in Table (2.2). In comparison with a wiggler (see Figure (3.9)), only the fluxes of the harmonics 1 
and 3 are higher than that from the wiggler. The photon energies of these harmonics are smaller 
than 1 KeV, hence they can’t be used for hard X-ray experiments.  

On axis the peak intensity of the nth harmonic of the undulator radiation is given by (in 
practical units [photons / ( s 0.1%BW mr2)]): 
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The peak intensity is proportional to the electron current, the radiation function Fn(K) and the 
square of the period number. The opening angle of the radiation cone is inversely proportional to 
the energy, and therefore the peak intensity according to Equation (2.17) is proportional to the 
square of the energy.  

The radiation function Fn(K) is presented in Figure (2.8). To reach maximum central intensity, 
the k-value should be in the range of 2 to 3.5 for the higher harmonics. 
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Figure 2.7: The undulator radiation function Fn(K) for the calculation of the central intensity of 

the undulator radiation. 
   
The brilliance of the undulator radiation is given by: 
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where 
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,QVHUWLQJ� �DFFRUGLQJ�WR�(TXDWLRQ��������� r�DQG� ¶r are given by: 
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)RU� WKH� DERYH� PHQWLRQHG� XQGXODWRU� WKH� FURVV� VHFWLRQV� r� DQG� GLYHUJHQFHV� r’ according to 

Equation (2.21) are summarized in the Table (2.3). 
 

Table 2.3: Cross sections and divergences of the undulator 
radiation emitted at SESAME  

      n    1    3    5    7    9 
r  �> P@ 7.05 4.07 3.15 2.66 2.35 
r’ [ rad] 44.3 25.6 19.8 16.7 14.8 

 
For the electrRQ��WKH�FURVV�VHFWLRQV�DQG�GLYHUJHQFHV�DUH�� x� ����� P�� y� ������ P�� x’ = 46 

UDG�� y¶� ������ UDG��:LWK� WKHVH�YDOXHV� WKH�FRPELQHG�FURVV�VHFWLRQV� [�\�DQG�GLYHUJHQFHV� [�\¶�

according to Equation (2.19) are summarized in Table (2.4): 
 

Table 2.4: Overall cross sections and divergences for the calculation of the undulator 
brilliance 

N 1 3 5 7 9 
x                [mm] 0.365 0.365 0.365 0.365 0.365 
y                [mm] 0.0296 0.0290 0.0289 0.0288 0.0288 
x
 y      [mm^2] 1.08E-2 1.06E-2 1.05E-2 1.05E-2 1.05E-2 
x’            [mrad] 0.0638 0.0526 0.0500 0.0490 0.0483 
y’            [mrad]                  0.0458 0.0281 0.0229 0.0204 0.0188 
x’* y’  [mrad^2] 2.92E-3 1.48E-3 1.15E-3 1.00E-3 9.08E-4 

  
The brilliance of the different harmonics and the different contributions are given in Table (2.5): 
 

Table 2.5: Parameters for the calculation of the undulator brillinace 

                             n       1       3       5       7      9 
n                                                       [keV]    0.316     0.948     1.58    2.12   2.88 

Und                                    [Phot/s0.1BW] 2.25E+15 1.23E+15 7.15E+14 4.29E+14 2.85E+14 
Area*Angle                     [mm^2*mrad^2] 1.24E-3 6.19E-4 4.77E-4 4.15E-4 3.76E-4 
Br(Und)    [Phot./s*mm^2*mra^2*0.1BW] 1.81Ê+18 1.99E+18 1.50E+18 1.03E+18 7.58E+17 

 
The brilliance of the undulator is for the 1st harmonics (0.316 KeV)  two orders  and for the 

9th (2.88 KeV) one order of magnitude higher than that from the wiggler. The scientific case for 
SESAME has to show if this is interesting for the users. 

With the Equations (2.19) to (2.21) the brilliance can be calculated accordingly in practical 
units [photons/(s 0.1%BW mm2 mrad2)]: 
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⋅
=    (2.22) 

where: 

                           ( )∑ ∑=
x y

A σσπ2  and ( ) ( )2’2’2’2’ /1/1 ryrxB σσσσ +⋅+=    (2.23) 


