2. Characteristics of Synchrotron Radiation

2.1 Introduction

The radiation in general is characterized by the following terms. spectral range, photon flux,
photon flux density, brilliance, and the polarization. The photon flux is the overal flux collected by
an experiment and reaching the sample, the photon flux density is the flux per area at the sample
and the brilliance is the flux per area and opening angle of the source. In the following chapter the
formulas for the calculation of these terms of the synchrotron radiation emitted from a stored beam
in the bending magnet, wiggler and undulator are compiled.

Many authors have established the theory of synchrotron radiation. Today most of the
calculations are using the results of the Schwinger theory. According to this theory the shape and
intensity within the radiation cone emitted by aradia accelerated relativistic electron beamis given
by:
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= photon flux (number of photons per second)
® = observation angle in the horizontal plane
Y = observation angle in the vertical plane
a = fine structure constant = (1/137)
y=electron energy / mec? (me = electron mass, c= velocity of light)
o = angular frequency of photons (ho = photon energy = )
=  beam current
e= electron charge = 1.601* 10™° coulomb
= /o= e (o = critical frequency = 3y°c/ 2p
gc= critical photon energy (= 3hey*/2p)
p=radiusof instantaneous curvature of electron trajectory = E/ecB
in practical units, p(m) = 3. 3356*(E/GeV)/(B/T)
= speed of light ( = 2.9979*10° m/s)
= electron beam energy
= magnetic field strength
gc= hoc [eKeV) = 0.665* (E/GeV)* (B/T)]
= yy (normalized angle in the vertical plane)
= y(1+X?)¥*¥2

The subscripted K’s are modified Bessel functions of the second kind. Equation (2.1) is the
basic formula for the calculation of the of the characteristics of the synchrotron radiation. The
polarization is given by the two terms within the square brackets.

2.2 Radiation from a Bending M agnet

The photon flux of the synchrotron radiation from the bending magnet is given by the
integration of Equation (2.1) over the whole vertical angle. In the horizontal plane the emitted cone
is constant and therefore the photon flux is proportional to the accepted angle 6 in the horizontal
plane:
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According to Equation (2.2), the photon flux is proportional to the beam current, the energy
and the normalized function Gi(e/sc) which depends only from the critical photon energy. This
function is given in Figure (2.1) and is illustrating that the spectrum of the synchrotron radiation
flux is a continuous one with amaximum at 1/3 of the critical photon energy.
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Figure 2.1: The normalized synchrotron radiation function G;.
The flux of the synchrotron radiation from the
bending magnet is proportional to thisfunction.

The fluxes emitted from a stored beam in a 1 GeV/1.87Tesla and 2 GeV/1.35Tesla storage
ring are presented in Figure (3.3). According to the higher energy, the flux emitted from a 2 GeV
machine is a factor of 2 higher. The critical photon energies of both machines are e= 1.24
(1GeV/1.87T) and 3.59 KeV (2GeV/1.35T). The spectrum for the 2 GeV storage ring is roughly
one order of magnitude broader, although the critical photon energy of the machines differ only by
afactor 3.

The intensity of the synchrotron radiation in the middle of the radiation cone (6 = 0 and y = 0)
Is given by the following formula (central intensity):
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Because the radiation cone is getting narrower with higher energy, the central intensity is
proportiona the square of the energy. The spectral dependency is given by the normalized
synchrotron function Ha(y) = Ha(e/ec). This function is presented in Figure (2.2). It is aso
continuous and has a maximum near the critical photon energy.
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Figure 2.2: The normalized synchrotron radiation function H,. The brilliance of
the synchrotron radiation from the bending magnet is proportional
to thisfunction.

From the definition of the flux (Equation (2.2)) and the central intensity (Equation (2.3)) the
vertical opening angle of the synchrotron radiation is given by:
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The opening angle of the synchrotron radiation for a 2 GeV electron beam is presented in
Figure (2.3):
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Figure 2.3: Opening angle of the synchrotron radiation emitted
from a2 GeV electron beam

The opening angle of the radiation from 1 and 2 GeV machines are given in Figure (3.4).
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The opening angle at the critical photon energy (y=1 or € = &) is, according to Equation (2.4):

1
o, (y=1)=0331mrad3— 25
w(Y=1 (E/GeV) (25)

For a2 GeV machine the corresponding angle is 0.166 mrad.
The brilliance of the synchrotron radiation from a bending magnet is given by the central
intensity divided by the cross section of the beam:
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and

ex (gy) is the electron beam emittance in the horizontal (vertical) plane,

Bx (By) IS the electron beam beta function in the horizontal (vertical) plane,

Nx is the dispersion function in the horizontal plane,

OE isthe rms value of the relative energy spread,

Yy isaTwiss parameter in the vertical plane,

oy Is the rms value of the radiation opening angle,

o=M(4no,) isthe diffraction limited source size,

A Is the observed photon wavelength

At a photon energy of 10 KeV the corresponding photon wavelength is 0.124 nm and the
opening angleis smaller than 0.1 mrad (see Figure (2.3)). Both figures result in a diffraction limited
source size of 6/=1.24 um. The term gy/c,, gives a cross section of 2 pum and Sy'Yy/GWZ has a value
between 1* 10 and 4* 10°°. These factors are at |east one order of magnitude smaller than the beam
cross section oy and oy, hence the overal cross sections in Equation (2.7) reduces for the storage
ring SESAME to:
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and the brilliance of the synchrotron radiation from the bending magnet of a non diffraction limited
light sourceis given by:
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The brilliance of a1 and 2 GeV beam (400 mA) are given in the Figures (3.7) and (3.8). The
critical photon energies of the different versions are: SE 1 | = 1.24 KeV, SE 2 | = 4.00 KeV,
SE 3 1 =400 KeV and SE 4 | = 3.60 KeV. From both figures it follows that the maximum
brilliance is around the critical photon energy. Because of the higher energy the brilliances of the 2
GeV beam are one order of magnitude broader than those for a 1 GeV beam. According to the



smaller cross sections (emittances) the brilliances of the versions SE_3 | and SE_4 | are of afactor
up to 50 higher than those from the 1 GeV beam (version SE_1 1).

2.3 Radiation from a Wiggler

The wiggler is a special magnet with alternating directions of the magnetic field and the
traectory of an electron beam through a wiggler is like a snake as shown in Figure (2.4), it isa
sinusoidal oscillation. The trajectory is determined by the maximum slope X’ and by the maximum
amplitude Xo. Both expressions are given by Equation (2.10).
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In the “Green Book” and in this “Proposal” different wigglers are foreseen: In the “Green
Book” a 7.5 Tesla super conducting wiggler and within this “proposal” a normal conducting one
with a field of 2.25 Tesla. The data of these devices are summarized in the Table (2.1):

Table 2.1: Data’s of the wigglers foreseen in the “Green Book™ and in this “Proposal”

B0 7\-W NW L K Xo X’
Green Book [750T [140mm | 6.5 0.91m [98.1 1.1mm |50 mrad
Proposal 225T |80 mm 30 24m |16.8 |0.055 mm |4.3 mrad
Trajectory in a Wiggler
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Figure 2.4: Trajectory of an electron beam in awiggler with a period length of 9cm

The photon flux as well as the central intensity of the radiation emitted by the wiggler is the
same as from the bending magnet but by a factor N, more intensive, where N, is the number of
poles within the wiggler. The photon flux emitted from the wigglers beams for the “Green Book”
and this “Proposal” are presented in the Figures (3.9) and (3.12). Both wigglers have roughly the
same critical photon energy (e«(Green Book) = 5.0 KeV, g¢(Proposal) = 6.0 KeV) and therefore the
spectrum of the flux is roughly the same.

For the intensity of the photon flux the amplitudes X, of the beam oscillations within the
wigglers have to be considered (see Table (2.1)). Because of the amplitude of 1.1mm in the “Green
Book” design the spot sizes in the wigglers have a difference of 2.2 mm and it is not possible to
collect both sources within one beam line. Therefore the useable flux from the wiggler for an
experiment is only proportional to half of the number of the poles. For the wiggler in this
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“Proposal” it is with an amplitude of 50 pm completely different; here all poles have to be
considered. All these arguments are included in the Figures (3.9) and (3.12), with a result, that the
flux from the 2 GeV stored beam is of a factor 18 higher than that from the 1 GeV one.

The calculation of the brilliance of wigglers needs to take into account the depth-of-fields, i.e.
the contribution to the apparent source size from different poles. The expression for the brilliance of
wigglers is:
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where:
= H~| + 1 H

Oy, G'x, Oy and ¢’y are the rms transverse size and angular divergence of the electron beam at
the center of an insertion straight section (ax = oy = 0). This means that the brilliance of the wiggler,
calculated according to Equation (2.11), is normalized to the middle of the straight section.

The exponential factor in Equation (2.11) arises because the wigglers have two points,
separated by 2*Xy according to Equation (2.10) and indicated in Figure (2.4). (The influence of this
two source points upon the photon flux has been discussed before.) The sum in Equation (2.11)
goes over all poles of the wigglers. As already discussed under the radiation of the bending magnets
the factor (gy/0,) is at least a factor 10 smaller than the cross section oy and can be neglected. The
expression zp*oy’ is the increase of the source size from the center of the insertion device.

Instead of normalizing the brilliance to the center of the straight section, the cross sections of
the beam size ox(n) and oy(n) at the position of the different poles can be used, with the result that
the expression for the brilliance will be simpler:
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The inverse of the dominator of Equation (2.13) for different beta functions is presented in
Figure (2.5). For high beta functions (4 to 22 m/rad) the cross section of the beam doesn’t change
very much and the brilliance is according to Figure (2.5) proportional to the length of the wiggler.
For small beta functions (0.05 and 0.4 m/rad) the brilliance of the wiggler will saturate, because the
cross section of the beam in the outer parts of the wiggler gets high and the contribution to the
brilliance is small and can therefore be neglected. According to Figure (2.5) the optimized betatron
functions should be in the range of 0.6 to 1.0 m/rad and the length should be in the range of 2 to 3
m.

The brilliance of the radiation emitted from the wigglers within the “Green Book” and this
“Proposal” are presented in the Figures (3.11) and (3.14). Figure (3.14) is that one with the “mini-
beta-sections”. Again, because of the same critical photon energies the emitted spectrum covers the
same range. However, because of the different cross sections of the beam the intensity is different.
For the versions SE_3 1 and SE_4 1 the intensity is roughly the same, but in comparison to
version SE_1 2 they have a factor of 40 higher intensity. The version SE_2_1 is of a factor 5 more
intensive. The picture changes completely by introducing “mini-beta-sections”. The brilliance of the
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wiggler radiation for this version is presented in Figure (3.14), with the result that the brilliance of
theversion SE_4 2 isof afactor 400 higher than that from the version SE_1 2.

Optimization of Wiggler Length
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Figure 2.5: Dependency of the brilliance of wiggler radiation upon the beta functions in the
middle of the wiggler. The proportionality is given by the sum of all inverse cross
sections at the different poles of thewiggler.

In order to optimize the brilliance of the wiggler radiation the beta functions in the middle of
the straight sections should be as small as possible (mini-beta-section) and the length of the wiggler
has only to be around 2 m, because the outer regions of the wiggler don’t have any significant
contribution to the brilliance.

2.4 Radiation of an Undulator

The opening angle o, of the synchrotron radiation from the bending magnet at the critical
photon energy & is according to Equation (2.4) roughly 0.655/y or 1/y. The maximum slope of the
electron trajectory in a wiggler is X* = K/y. For values of K in the range between 1 to 2 the
deflection angle in a wiggler is within the opening angle of the synchrotron radiation. For this
special case the radiation from different periods interferences coherently, thus producing sharp
peaks with the result of completely different characteristics. This radiation is called undulator
radiation and the corresponding insertion devices are undulators.

The undulator emits radiation only at characteristics photon energies:

n

= 0.949KeV [{E/GeV )°.
& oV [{E/Gev) (Ao /cm) L+ K2 /2)

(2.14)

with the bandwidth:

where:

n= Harmonic number (n=1,3,5,7, ..... )
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N= Number of periods
Aund = Period length of the undulator
K= Deflection parameter (see Equation (2.10))

The opening angle of the undulator radiation coneis:
_ 1+ K?/2
y 2Nn

For the illustration of the characteristics of the undulator radiation, the following example
shall be used:

o, (2.15)

r

E=2GeV, huna=40mm, K =2and N =50
& =0.316KeV and g, = 2.85KeV
Ag, =6.326V  and Agy = 6.32eV
0, (1) =0.0443mrad and o, (9) = 0.0148mrad

Qn-Function for the Undulator - Radiation
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Figure 2.6: The undulator radiation function Q,(K) for the calculation of the radiation flux

The flux of the undulator radiation within the cone of the harmonics is given by (in practical
units):

@, (N, K) =1.432000% [N, , {1 / A) [@, (K) [Photons/(s 0.1%BW)] (2.16)

According to Equation (2.16) the flux of the undulator radiation is proportional to the number
of periods, the current and the function Q,(K). It is independent of the energy of the electrons. The
function Qn(K) is given in Figure (2.6) for the harmonics n =1 to n= 9. To reach a high photon flux
(also for higher harmonics), the deflection parameter K should be in the range of 2 to 3.

10



Table 2.2: Photon energies and fluxes of an undulator installed at SESAME

N 1 3 5 7 9
ec [KeV] 0.316 0.948 1.58 2.212 2.88
Oyng [PhO/s0.1BW | 2.25¢10" | 1.23*10" | 7.15*10" | 4.29*10"™ | 2.86¥10™

The fluxes of the different harmonics and the corresponding photon energies are summarized
in Table (2.2). In comparison with a wiggler (see Figure (3.9)), only the fluxes of the harmonics 1
and 3 are higher than that from the wiggler. The photon energies of these harmonics are smaller
than 1 KeV, hence they can’t be used for hard X-ray experiments.
On axis the peak intensity of the nth harmonic of the undulator radiation is given by (in
practical units [photons / (s 0.1%BW mr?)]):
2
m(e = =0) =1.74400% (N2, ({E/GeV )* I / A)F, (K)
dady
The peak intensity is proportional to the electron current, the radiation function Fn(K) and the
square of the period number. The opening angle of the radiation cone is inversely proportional to
the energy, and therefore the peak intensity according to Equation (2.17) is proportional to the
square of the energy.
The radiation function F,(K) is presented in Figure (2.8). To reach maximum central intensity,
the k-value should be in the range of 2 to 3.5 for the higher harmonics.

(2.17)
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Figure 2.7: The undulator radiation function F,(K) for the calculation of the central intensity of
the undulator radiation.

The brilliance of the undulator radiation is given by:
Dy (9\ =y = 0) \

Bluna = (ZITZXJZyJ)[QZHZXJ’ZyJ’)
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where

>.0= Joi+ao? >,0= Jos +a?, >.0'= Joli+o?, Zya’:qlaf +0? (2.19)
: 1 :
Oyy =&y Bry s Oxy =AEy ! Byy s O, —E\//\L , 0, =JAIL (2.20)
Inserting A according to Equation (2.14), o; and ¢’ are given by:
A 2 i 2
g, = v (‘1+K /Z;EN P _1 {‘1+K /2; (2.21)
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For the above mentioned undulator the cross sections o, and divergences o,” according to
Equation (2.21) are summarized in the Table (2.3).

Table 2.3: Cross sections and diver gences of the undulator
radiation emitted at SESAME

n 1 3 5 7 9
or [um] 7.05 |4.07 |3.15 |2.66 |2.35
o’ [urad]  |44.3 |25.6 |19.8 |16.7 |14.8

For the electron, the cross sections and divergences are: 6x = 365 um, 6y = 28.7 um, ox’ = 46
urad, oy’ = 11.6 urad. With these values the combined cross sections 2x,y and divergences XX,y’
according to Equation (2.19) are summarized in Table (2.4):

Table 2.4: Overall cross sections and divergences for the calculation of the undulator

brilliance
N 1 3 5 7 9
Zx [mm] |0.365 0.365 0.365 0.365 0.365
2y [mm] [0.0296 0.0290 0.0289 0.0288 0.0288
¥y [mm”2] |1.08E-2 |1.06E-2 |1.05E-2 |1.05E-2 |1.05E-2
DN [mrad] |0.0638 0.0526 0.0500 0.0490 0.0483
2y [mrad] |0.0458 0.0281 0.0229 |0.0204 0.0188
% *%) [mrad”2] |2.92E-3 |1.48E-3 |1.15E-3 |1.00E-3 |9.08E-4

The brilliance of the different harmonics and the different contributions are given in Table (2.5):

Table 2.5: Parametersfor the calculation of the undulator brillinace

n 1 3 5 7 9

& [kev] | 0.316 0.948 158 2.12 2.88
D [Phot/sO.1BW] | 2.25E+15 | 1.23E+15 |7.15E+14 |4.29E+14 | 2.85E+14
Area*Angle [mM"2*mrad’2] | 1.24E-3 | 6.19E-4 | 477E-4 | 4.15E-4 | 3.76E-4
B,(Und) [Phot/s*mm"2*mra*2*0.1BW] | 1.81E+18 |1.09E+18 |1.50E+18 |1.03E+18 |7.58E+17

The brilliance of the undulator is for the 1% harmonics (0.316 KeV) two orders and for the
o™ (2.88 KeV) one order of magnitude higher than that from the wiggler. The scientific case for
SESAME hasto show if thisisinteresting for the users.

With the Equations (2.19) to (2.21) the brilliance can be calculated accordingly in practical
units [photons/(s 0.1%BW mm? mrad?)]:
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Br, = % M.74500“ [{l / A)IN2 [{E/ GeV )’ [F, (K) (2.22)

where:

A=(2n)y oY o ad B=(1+0?/0?|li+o} 107 (2.23)
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