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Chapter 4 

BEAM OPTICS 
 
4.1  Introduction 

Since the usefulness of the synchrotron radiation source is connected to its satisfying to the 
experimental demands by offering the needed photon energy and brilliance, the scientific case of 
SESAME was upgraded due to the recent demands for higher photon energies with high 
brilliance.  

Going with the machine energy from 2 GeV to 2.5 GeV was the convenient solution for 
this requirement. 

εc (keV) = 0.665 B(T)E2 (GeV)                        (4.1) 

This needed changes in some parameters of the last version and modifications in its 
characteristics [1]. 

The low emittance is the most efficient solution to get high brilliance. Since the emittance 
increases with the square of the machine energy, 

εx  =  Cq γ2 <Η>mag /Jx ρ                                           (4.2) 
Where: 

<Η>mag  = ∫ (γx η2 + 2αx ηη’ + βx η’2 ) ds / 2πρ                  (4.3) 
 

Jx =1-I4/I2     ,  I4 = ∫ΒΜ (1−2n) η  ds / ρ²  ,   I2= ∫ΒΜ 1  ds / ρ²  ,   Cq= 3.84.10-13 mrad 
 

Efforts should be done to minimise it by using another optical aspects and designing 
strategies.  

The SESAME storage ring lattice had to go through some modifications taking into 
account the different geometrical, financial and optical restrictions that made these 
modifications to be challenging. 

 
4.2    The Lattice 
4.2.1 The Unit Cell 

An increase in the machine energy from 2 to 2.5 GeV with keeping the bending magnets 
(BMs) enough below the saturation limit, resulted in an increase in the curvature radius (ρ) of 
the BM according to equation (4.4): 

B(T)ρ(m) = E(GeV)/0.2998                   (4.4) 

The resulted curvature radius was 5.9565 m, together with a little increase in the field flux 
in the BMs to 1.4 T. This in turn increased the length of the BM to 2.34 m. 

The high-energy radiation with high brilliance from the insertion devices has a priority in 
SESAME case. So, a special care was given to offering an enough number of straight sections 
with reasonable lengths to accommodate the different insertion devices, and getting as low 
emittance as possible. 

The storage ring circumference was limited by geometrical restrictions which put a limit 
to the idea of increasing the curvature radius (ρ) to decrease the emittance (see equations (4.2) 
and (4.3)). The better idea was to increase the horizontal damping partition number (Jx) by 
increasing the field gradient in the BMs to 3.032 (T/m), and decreasing the dispersion in the 
BMs (η) by increasing the dispersion in the straight sections. 
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The idea of using BMs with gradient which can be varied by ±6% was consumed to 
eliminate the vertically-focusing quadrupoles and keep just the horizontally-focusing ones in 2 
families. By this step, more spaces between the magnetic elements have been gained, longer 
sections for the insertion devices have been offered and the number of used quadrupoles has 
been reduced. Figure (4.1) shows the difference in the cell structure between the previous ring 
lattice (in the white book) and the new upgraded one. 

Reducing the machine flexibility was the most considerable disadvantage of this step, but 
it will be shown that this will not has a significant impact on the machine performance except 
that it confines us to a limited freedom in changing the integer vertical tune which calls for a 
special care in choosing the working point.  

Keeping the sextupoles in 4 families was necessary for non linear optimisations and 
compensations for the effect of insertion devices on the dynamic aperture and tune shift with 
amplitudes. This flexibility is necessary to get a large dynamic aperture, especially that the 
chromaticity will be corrected, at least, to 2 in both planes.  

The upgraded SESAME storage ring lattice with its optical functions is shown in figure 
(4.2), and its structure elements are given by table (4.1). Attention should be paid here to the fact 
that the strength of the sextupole (m) in the table is defined by ²²)21( xBz/B/ ∂∂ . 

The ratio (∑ straight section length/circumference) is a figure of merit for storage ring 
compactness.  The upgraded SESAME lattice occupies a high level in this criteria among the 
synchrotron radiation sources in the world. SESAME storage ring parameters are given in table 
(4.2).  

 
(a) 

 

 
(b) 

Figure 4.1: The structure of one super period (2cells) of: (a) the white book 
        lattice and (b) the upgraded lattice (in this yellow book). 
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Figure 4.2: Optical functions of SESAME lattice, the green line represents 

  dispersion. The pink circles represent bPMs. 
 
A resulted relatively high βz in the BMs accompanied by a high decoupling between the 

vertical and horizontal betatron functions was consumed to increase the bending gradient 
efficiency in changing the vertical tune and compensating for the tune shift and beta beating 
caused by the insertion devices. On the other hand a high care should be taken in aligning the 
BMs during the installation process. 

It should be mentioned here that the above optics is the “bare lattice optics” i.e. without 
insertion devices. The optimum optics for several cases of insertion devices has been 
investigated (see section 4.3). 
 

Table 4.1: The lattice elements of half-super period structure. 
The total ring is 8 super periods. 

Name code Element Length(m) ρ(m) k(m-2 ) m (m-3 ) 
1 D1 1.505    
2 SI 0.14   9.1941 
3 D2 0.155    
4 Q1 0.285  2.038  
5 D3 0.255    
6 S2 0.14   -12.9194 
7 D4 0.205    
8 BM 2.34 5.95651 -.36358  
9 D5 0.205    
10 S3 0.14   -12.5963 
11 D6 0.255    
12 Q2 0.285  2.02928  
13 D7 0.155    
14 S4 0.14   8.94741 
15 D8 1.596    
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Table 4.2: SESAME storage ring parameters 
                  (without insertion devices). 

Parameter Unit Value 
General Parameters 
Energy GeV 2.5 
Maximum Beam current mA 400 
Circumference m 124.802 
Natural emittance nm.rad 24.9 
Coupling % 1 
Horizontal emittance nm.rad 24.65 
Vertical emittance nm.rad 0.2465 
Horizontal tune  7.217 
Vertical tune  5.192 
Relative energy spread % 0.1119 
Chromaticity (horizontal)  -13.1 
Chromaticity (vertical)  -13.8 
Machine Functions 
Horizontal beta functions   
Wiggler / bending / undulator m/rad 11.12 / 0.483  / 10.9 
Vertical beta functions   
Wiggler / bending / undulator m/rad 1.89 / 18.75 / 1.73 
Dispersion function   
Wiggler / bending / undulator m 0.453 / 0.135 /0.534 
Beam Sizes and Cross Sections 
Horizontal beam size   
Wiggler / bending /undulator µm 728.6 / 186.3 / 790.9 
Vertical beam size   
Wiggler / bending / undulator µm 21.6 / 68 / 20.6 
Beam area   
Wiggler / bending / undulator mm² 0.099 / 0.0796 / 0.102 
R.F-System (2nd stage) 
Energy loss per turn keV 580 
R.F-power kW 413 
Cavity Shunt impedance  MΩ 3.4 
R.F-cavity voltage kV 487 

 
4.2.2 The Lattice Optimisation 

To get a high machine performance represented by a high brilliance, a high beam stability 
and lifetime, the optics should be well optimised by going though different optimisation steps. 

 

First Step: The Optical Functions: In this part of optimisation, one try to get the required 
optics which achieve a small emittance, a relatively high βx in the injection section (to ease the 
injection process), a small βz in the insertion device section (to minimize their unwanted optical 
effects), a relatively low βx and βz in the quadrupoles (to minimize the natural chromaticties) and 
other aspects that guarantee the high brilliance and beam stability.  
Second Step: Choosing the Working Point: The first step should be accompanied by a good 
choice for the machine tunes. The working point should be chosen in a region, on the tune 
diagram, where the minimum destructive resonances which threat the beam stability and 
lifetime. The tunes have to achieve the minimum sensitivity to dipolar and quadrupolar errors. It 
is recommended for the vertical tune to be below the half integer in order to reduce resistive 
wall instabilities. 
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Third Step: Optimising the Tune Shift with Amplitude and the Dynamic Aperture: The 
tune shift with amplitude is the unwanted effect of the chromatic sextupoles which means that 
position the sextupoles in suitable places in the ring will minimize this non linear effect. 
Minimising the tune shift with amplitude also depends strongly on the 2nd step as well as on the 
first step where the natural chromaticity should be minimized as much as possible. After taking 
the above helpful actions, the tune shift with amplitude can be minimised by optimising the 
sextupole strengths.  

This optimisation will result in increasing the transverse stable area provided for the beam 
oscillation, i.e. increasing the dynamic aperture which should be larger than the physical one. 

 

Fourth Step: Studying the Machine Acceptance: Since the dynamic aperture calculations 
determine the boundary of the dynamic aperture, testing the stability inside it is an important 
procedure. This can be done by tracking a particle at several points in the horizontal and vertical 
phase-space for enough number of turns. The shapes of the resulted ellipses will denote the 
strength of non linearity, and the presence of any respected resonance will be revealed. 
 

Fifth Step: Studying the Off-momentum Dynamics: As the stability of the off-momentum 
particles will provide a relaxed Touschek and Bremsstrahlung lifetimes, a great interest should 
be given to this part. 

The tune shift with momentum deviation is a result of the non linearity caused by the 
sextupoles. This tune shift can’t be well controlled, but it depends strongly on the working point 
and the value of the natural chromaticity (the 1st and 2nd steps) as well as on the value of 
corrected chromaticity. It is of great deal that the tune of the off-momentum particles doesn’t 
cross any destructive resonance as well as the tune shift with amplitude of these particles. A 
good dynamic aperture for the off-momentum particle will be a result of that. 
 

4.2.2.1 Choice of the Working Point 
To avoid the instabilities, and to enhance the off-axis and off-momentum particle dynamic 

behaviours, the working point has been chosen to satisfy several criteria: 
a) to be where the amplitudes of  the 3rd order resonance driving terms are as small as 

possible. 
b) to be where the tune shifts with amplitude are as small as possible. 
c) to be with fractional parts that prevent any tune coupling (equality in the tune 

fractional parts) before the end of the physical aperture. 
d) to be with fractional parts that offer larger momentum aperture in case of correcting the 

horizontal and vertical chromaticity to +2, at least. 

After testing some working points with horizontal integer part of 7 and vertical ones of 4 
and 5 [i.e. (7.--, 4.--) and (7.--, 5.--)], the working point with 7 and 5 as horizontal and vertical 
integer parts satisfied conditions a) and b) much more than that of 4 as a vertical integer part.  

In order to satisfy the condition c) and due to the directions of the horizontal and vertical 
tune changes with amplitude (see figure (4.5)), the vertical fractional part of the tune has been 
chosen to be less than the horizontal one.  This will help in avoiding any tune coupling may 
cause a betatron coupling which may lead, in tern, to unwanted effects. 

Since the natural chromaticity will be corrected to 2, the tune shifts with energy will be 
with high slopes that cause the off-momentum particles to cross some dangerous resonance at 
small energy deviations causing them to be lost (see section 4.2.2.4). To avoid this risk (i.e. to 
satisfy condition d)), the fractional parts of the tunes have been chosen to be less than 0.23. 

The chosen working point (7.217, 5.192) and its position from different types of resonance 
is shown on the tune diagram in figure (4.3). 

The resonance lines on the tune diagram are given by the resonance equation: 
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m * Q x + n * Q z = k                                     (4.5) 
Where m, n and k are integers, Q x and Q z are the horizontal and vertical tunes. |m| + |n| is 

the order of the resonance. 
If the integer k is a multiple of the machine periodicity (i.e. k = L * P, L is integer and P is 

the machine periodicity which is 8 in SESAME case) then the resonance is called “systematic” 
or “structure” resonance and could be more serious than the others of the same order. Also, the 
sum resonance (represented by descending lines on the tune diagram) are of greater concern 
than difference resonance (represented by ascending lines). The resonances of small order are 
more dangerous than that of high order, so the integer, half-integer and third-integer resonance 
are the most serious ones which should be avoided.  

The resonance lines and their driving forces, up to 7th order, are given by table (4.3), and 
the preliminary analysis to the closest resonance lines surrounding the working point are given 
in table (4.4) and their indications are shown in figure (4.4). 

 

 
            Figure 4.3: Tune diagram shows all the 2nd order (in black) and 3rd order (in red)  

           resonance as well as the systematic 4th (in green), 5th (in blue) and 7th  
                                       (in grey) order resonance. 

Table 4.3: Resonance lines and their driving forces up to 7th order. 

Resonance order Driving  
multipole 

Resonance lines caused 
by normal multipole 

Resonance lines caused 
by skewed multipole 

Number 
of lines 

Integer Dipole Q x =k Q z = k 2 
Half-integer Quadrupole 2Q x =k  ,  2Q z =k Q x ± Q z =k 4 
Third-integer Sextupole 3Q x =k  ,  Q x ± 2Q z =k 2Q x ± Q z =k  ,  3Q z =k 6 
Fourth-integer Octupole 4Q x =k  , 2Q x ± 2Q z =k 

4Q z =k 
3Q x ± Q z =k 
Q x ± 3Q z =k 

8 

Fifth-integer Decapole 5Q x =k  , 3Q x ± 2Q z =k 
Q x ± 4Q z =k 

2Q x ± 3Q z =k 
4Q x ± Q z =k  ,  5Q z =k 

10 

Sixth-integer dedecapole 6Q x =k  , 4Q x ± 2Q z =k 
2Q x ± 4Q z =k , 6Q z =k 

5Q x ± Q z =k 
3Q x ± 3Q z =k 
Q x ± 5Q z =k 

12 

Seventh-integer 14-pole 7Q x =k  , 5Q x ± 2Q z =k 
3Q x ± 4Q z =k 
Q x ± 6Q z =k 

6Q x ± Q z =k 
4Q x ± 3Q z =k 
2Q x ± 5Q z =k , 7Q z =k 

14 
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Table 4.4: Resonance lines around the working point (see figure (4.4)). 

Name Resonance line Order Driving source Gravity 
L1 Q x - Q z  = 2 2nd  Skew quadrupole Near by, not dangerous 
L2 3Q z  = 2*8 3rd  Skew sextupole Far away, not dangerous 
L3 3Q x  = 3*8 3rd  Normal sextupole Far away, not dangerous 
L4 Q x - 2Q z  = -8  3rd  Normal sextupole Medium distance, could be dangerous 
L5 2Q x - Q z  = 9 3rd  Skew sextupole Far away, not dangerous 
L6 Q x - 3Q z  = -8 4th  Skew octupole Far away, not dangerous 
L7 3Q x + 2Q z  = 32 5th  Normal decapole Near by, not dangerous 
L8 4Q x - Q z  = 3*8 5th  Skew decapole Medium distance, not dangerous 
L9 Q x - 6Q z  = -3*8 7th  Normal 14-pole Near by, not dangerous 
L10 2Q x + 5Q z  = 5*8 7th Skew 14-pole Medium distance, not dangerous 
L11 6Q x + Q z  = 6*8 7th  Skew 14-pole Medium distance, not dangerous 

 

 
Figure 4.4: The working point among the resonance lines indicated by table (4.4). 

 
According to table (4.4) and figure (4.4), the only resonance line that could has a serious 

danger is L4, but the working point is not expected to reach this line (see section 4.2.2.2) which 
makes it out of the dynamic range. 
 
4.2.2.2 The Tune Shift with Amplitude 

The tune shifts with amplitude were kept as smooth as possible with a special care given 
to the horizontal one due to the fact that the large betatron excursions will be in the horizontal 
plane. The choice of the working point together with the non linear optimisation were done in 
order to prevent the tunes from crossing any 2nd, 3rd, 4th or 5th order resonance before an enough 
betatron amplitude in each plane independently. They are shown in figure (4.5) for a particle 
tracked for 1000 turns. The horizontal shifted tune with x, at z = 0, reach the random 4th order 
resonance (Q x = 7.25) after 40 mm amplitude which is already out of the vacuum chamber (x = 
35mm and x = -27.5mm where the septum sheet will be) and the 3rd order resonance will be 
automatically far out of our range. 

Concerning the vertical shifted tune, at x = 0, it will be changed by a small amount in the 
needed vertical dimension (z = 3 mm) where the tune will not go below 5.185.   
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The tune shift with horizontal and vertical amplitudes simultaneously can be seen by 
Frequency Map Analysis, which needs a special later study.  
 

 
Figure 4.5: Tune shift with betatron amplitude with chromaticity = 2 in both 

                                                planes. The horizontal (in red) tune is with integer part = 7 and the  
                                                vertical one (in blue) is with integer part = 5. The green lines  
                                                represent the horizontal limiting aperture, while the pink lines 
                                                represent the vertical limiting aperture. 
 
4.2.2.3 The Dynamic Aperture 

The dynamic aperture is the stable transverse area for the particle in which it can execute 
its oscillations safely without getting defused or lost, the boundary of the dynamic aperture 
separates between the stable and unstable regions. It should be larger than the vacuum chamber 
to guarantee a good beam lifetime. 

A large dynamic aperture is an indication of high beam stability and it is the result of the 
linear and non linear optimisations where the oscillating particle is protected from falling into 
any significant resonance before an enough amplitude.  Figure (4.6) shows the dynamic aperture 
compared to the needed physical one. 
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             Figure 4.6: Dynamic aperture (in black) for on-momentum particle, calculated 

                                                    for 1000 turns.  Physical aperture is shown in blue while the septum 
                                                    sheet (at x = -27.5mm) is represented by the red line. 

For more trustable results, the on-momentum particle has been tracked for 1000 turns at 
each 5 mm in the horizontal phase space (z = 0) and at each 2 mm in the vertical phase space (x 
= 0). Figure (4.7) shows the normalized horizontal phase space tracking that attests the stability 
of the particles up to x = 75 mm although they start a small diffusion at x = 55 mm, which is 
already out of the vacuum chamber (x = 35mm and x = -27.5mm at septum). It should be noted 
here that the normalized phase space is a transformation of the normal one where the phase 
space ellipse becomes a circle. The Courant-Snyder invariant is treated as: 

γ y² + 2α y y’+ β y’² = ε      ⇒      y² + (α y + β y’)² = βε ,   where y represents x or z. 

 

 
Figure 4.7: The normalized horizontal phase space at z = 0. 

 
The low deformation of the ellipses which start after x = 25 mm shows the beginning of 

the weak resonance effects effect at that amplitude. 
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The normalized vertical phase space at x = 0 is shown in figure (4.8) where the regular 
shapes of the ellipses at up to z = 16 mm attests the stability in this region. The unstable region 
starts after x = 18 mm where the particles start to diffuse.  
 

 
Figure 4.8: The normalized vertical phase space at x = 0. 

 
These calculations have been done at the beginning of the super period where the needed 

vertical half-aperture is 3 mm.  
 

4.2.2.4 The Off-momentum Dynamics 
The collisions happen between the beam particles cause energy transfers (loss or gain) 

between them and they start to execute oscillations in energy. Due to the chromaticity value and 
the sextupole non linear effects, the tunes become energy dependant. 

Protecting these off-momentum particles from being lost has a great concern in keeping a 
reasonable beam lifetime.  

An attention was paid to keep the shifted tune with energy away from crossing the 
dangerous resonance especially the 3rd order one. Because the optimisation was for a corrected 
chromaticity = 2 in both planes, the slope of the tune shift with energy deviation was high i.e. 
the tune changes highly with energy deviation. This causes the shifted tune to cross different 
significant resonances before the particle reach an enough energy deviation that guarantees 
reasonable Touscheck and Bremsstrahlung lifetimes. This risk was avoided by choosing the 
fractional parts of the tunes to be below (0.23) which guarantees that the off-momentum 
particles will not cross the 3rd order resonance before a 3% of momentum deviation, as shown in 
figure (4.9). We need this high momentum aperture so far. 

In non-zero dispersion section (which is everywhere in SESAME ring), the off-
momentum particles will oscillate around different off-momentum closed orbits displaced from 
the nominal one by a distance ∆x depending on the particle momentum deviation and the 
dispersion value ηx: 

∆x = ηx . ∆p/ p                                      (4.6) 
The oscillation of the off-momentum particles in energy means their oscillation between 

the average amplitudes ± ∆x from the nominal orbit, which makes it necessary to check their 
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tune shift with amplitude.  Figure (4.10) shows the tune shift with amplitude for particles with 
momentum deviation between 4% and –4%. Taking into account the positions of the different 
off-momentum closed orbits from the vacuum chamber centre, together with the borders of the 
vacuum chamber at x = ±35 mm, we see that non of these particles crosses any destructive 
resonance like the 3rd order one. 
 

 
Figure 4.9: Horizontal (in red) and vertical (in blue) tune shifts with momentum 

                                             deviation.  Corrected chromaticity = 2 in both planes. 
 

Dynamic apertures, around the axis of the vacuum chamber, for the particles with 
momentum deviation between 4 % and -4% are shown in figure (4.11).  Oscillation of these 
particles around different closed orbits must be also taken into account in figure (4.11). 

 

 
Figure 4.10: The tune shift with amplitude for the off-momentum particles with 

                                               momentum deviation of : 4%(grey), 3%(yellow), 2%(cyan), 1%(pink),  
                                               -1%(blue), -2%(green), -3%(red) and –4%(black).  
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Figure 4.11: Dynamic apertures for off-momentum particles of 4% (grey), 

                                                    3% (yellow), 2% (cyan), 1% (pink), -1%(blue), -2%(green),  
                                                   -3%(red) and –4%(black). The needed physical acceptance 
                                                   appears in pink. 
 

Tracking the extreme off-momentum particles of ∆p/ p = 4% and –4%, as an example, 
around their closed orbits in the horizontal and vertical phase spaces, shows the stability of these 
particles inside the vacuum chamber. This is shown by figures (4.12), (4.13), (4.14) and (4.15).                        
 

 
Figure 4.12: Tracking of the 4% off-momentum particle, around its chromatic 

                                                 orbit, in the normalized horizontal phase space. 
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Figure 4.13: Tracking of the 4% off-momentum particle in the normalized vertical 

                   phase space.  
 

The high order resonance at x = 55mm in figure (4.12), x = 25mm in figure (4.14) and the 
4th order one at z = 4mm in figure (4.13) are not dangerous since they are followed by stable 
regions. 
 

 
Figure 4.14: Tracking of the - 4% off-momentum particle, around its chromatic orbit, 

                                          in the normalized horizontal phase space. 
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Figure 4.15: Tracking of the - 4% off-momentum particle in the normalized vertical 

                                            phase space. 
 
4.2.3 The Machine Acceptance 

The physical acceptance at some point (s) in the ring is defined by the maximum 
emittance that can be accepted at that point. It depends on the optical functions, the particle 
momentum deviation and on the transverse limiting aperture there. It can be determined by the 
vacuum chamber or the dynamic aperture dimensions. The physical acceptance of the machine 
is determined by the minimum acceptance all over the ring i.e. the minimum of the maximum 
emittance accepted by the ring: 

Aphys(δ)x, z = Min{(Yx, z (s) - ηx, z (s) *δ )² / βx, z (s)}                         (4.7) 

Where Yx, z (s) is the limiting dimension which could be the vacuum chamber aperture or 
the dynamic aperture and δ= ∆p/p is the particle momentum deviation. 

 In SESAME case and without introducing the multi-polar effects (the ideal machine 
case), the machine physical acceptance is limited by the vacuum chamber acceptance as shown 
by figure (4.16). The calculations have been done at the beginning of the ring where the septum 
will be. One can hope that the dynamic acceptance will still larger than the chamber one under 
the multi-polar effect in case if the magnetic elements were well manufactured. 

The machine physical acceptance is always limited horizontally by the septum magnet 
position if it is at x < 34.6 mm from the axis of the vacuum chamber. On the condition that the 
septum will be at x = -27.5mm, the horizontal acceptance (for the on-momentum particle) = 
6.94.10-5 mrad. Vertically, it will be limited by the in-vacuum undulator gap (3 mm), which 
makes the vertical acceptance to be 5.2.10-6. 
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Figure 4.16: The ideal dynamic acceptance (in red) and the physical one 

                                                     determined by the vacuum chamber (in blue) as a function of δ. 
 

The energy acceptance (momentum aperture) at some point (s) is the maximum energy 
deviation given to the particle at that point without causing it to get lost anywhere in the ring. At 
some point (s), the energy acceptance is limited longitudinally by the RF energy one and 
transversely by the min [chamber energy acceptance, the dynamic aperture one].  

In the transverse plane, the energy acceptance at some deviation point depends on the 
Twiss parameters (α, β, γ) and the dispersion (η) of the deviated particle at that point as well as 
on the β, η and the limiting transverse dimension (the vacuum chamber or the dynamic aperture) 
at any other point in the ring. 

The transverse energy acceptance at any collision point (s*) (which produce the particle 
energy deviation δ) in the ring, can be calculated from the following equation: 

εt.acc(s*, δ) = X(s) / [ η(s) + [β(s) H(s*,δ)]1/2 ]                                        (4.8) 

and:  H(s*,δ) = γ(s*,δ) η²(s*,δ) + 2 α(s*,δ) η(s*,δ) η’(s*,δ) + β(s*,δ) η’²(s*,δ) 

Where X(s) is the limiting transverse aperture at some point (s) and H(s*,δ) is the energy-
dependant lattice invariant (H-function) of the collided particle at point (s*). 

Generally, the energy acceptance = min [RF energy acceptance, vacuum chamber energy 
acceptance, dynamic aperture energy acceptance]. Since the dynamic acceptance is much larger 
than the chamber one, as shown in figure (4.16), we are limited transversely always by the 
vacuum chamber (specifically by the septum magnet). 

Figure (4.17) shows the change in the transverse energy acceptance, according to equation 
(4.8), along one super period of SESAME ring. The positive energy acceptance (∆p/p %) is 
shown in blue while the negative one (-∆p/p %) is shown in red.  It can be seen that the 
minimum energy acceptance is at the middle of the bending magnet and it is about 2.17 % in the 
positive side of the chamber and about –2.32 % in the negative side of the chamber. 

The difference in energy acceptance between the positive deviation and the negative one is 
a result of the non linearity caused by the sextupoles (see figures (4.7), (4.12) and (4.14)) which 
cause the corresponding total amplitude of the positively deviated particle to be different from 
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that of the negatively deviated one, specifically at the points of high amplitudes. This will make 
the deviated particles see different limitations at the same point which determines, in turn, 
different energy acceptances (for +δ and -δ) at the same collision (deviation) point. In the ideal 
case the energy acceptance should be symmetric around the nominal closed orbit (the vacuum 
chamber axes). 
 

 

 
Figure 4.17: The absolute energy acceptance change through the super period of 

                                               SESAME ring. The positive energy acceptance is in blue and the  
                                               negative one is in red. 

Getting the minimum energy acceptance to be in the bending is a result of the fact that the 
maximum H-function is in the middle of the bending and this is due to the high dispersion value 
there (0.137m). This high dispersion value in the bending centre –in spite of the dispersion 
distribution in the straight sections- is a consequence of the large bending angle (0.393rad). 
Figure (4.18) shows the energy-dependant H-function (H(s, δ)) along one super period of 
SESAME storage ring. 

Since the RF energy acceptance of SESAME will be around 1.3 % at the beginning, the 
machine energy acceptance will be limited only by the RF one.  

A high energy acceptance is necessary to accommodate a good percentage of the off-
momentum particles which will lead to a comfortable Touschek and Bremsstrahlung lifetimes. 
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Figure 4.18: The horizontal H(s,δ) function (see equation 4.8) along one super 

                                                 period for: the on-momentum particle (in red), the 2% (in blue) 
                                    and the –2% (in green) off-momentum particles. 
 
4.3    Effect of Insertion Devices on SESAME Optics 
4.3.1 Choosing the Optimum Optics 

Getting high energy photons together with a high brilliance is of high priority in SESAME 
as well as the synchrotron light sources. Since this radiation with these characteristics can be 
provided by the insertion devices (IDs), SESAME machine is considered as a machine of 
insertion devices. This made studying their effect on the beam optics, and testing the flexibility 
of the ring lattice in dealing with them a crucial issue in SESAME life. 

As wigglers have stronger effects on beam dynamics than undulators, our preliminary 
study on the IDs effects and their treatments has been concentrated on them. 

The beam optics behaviour under wiggler effect has been investigated using two types of 
wigglers:  

• One with: magnetic field = 2.5T, length = 2.4m and period length = 120mm. 
• The other with: magnetic field = 3.5T, length = 1.44m and period length = 60mm. 

The dispersion in the wiggler straight section has a principal role in determining the 
wiggler effect on the emittance which has its direct effect on the beam size (σx) and divergence 
(σ’x). Since the brilliance of the wiggler radiation is inversely proportional to the beam size and 
beam divergence in the wiggler, the value of dispersion there has a strong effect on the brilliance 
value.   

For the sake of finding the optimum optics for different IDs configurations, different 
optics of different dispersion values (in the wiggler section) have been investigated using cases 
of 2, 4 and 8 wigglers inserted. These cases are preferable due to their compatibility with 
SESAME ring symmetry as has been shown in the previous “White Book”. The corresponding 
quadrupole and sextupole strengths to the investigated optics are given by table (4.5) while table 
(4.6) shows the different optics emittances before and after applying wigglers in the above 
cases.  
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A comparison was made between the different optics for the highest wiggler radiation 
brilliance for the above wiggler types and number cases. Figures (4.19) and (4.20) show the 
brilliance comparison for the two types of wigglers in 8 wigglers case. 

In case of 4 and 2 wigglers, the brilliance was calculated after the compensation for beta 
beating and tune shift has been done. That was due to the small optical changes happen after 
compensation. 

On the other hand, the dispersion change in wiggler section changes the dispersion in the 
undulator section which changes, in turn, the beam size and divergence there. This will affect 
the brilliance of the undulator radiation which is inversely proportional to the quantity σx * σ’x  
(in the electron beam limit). The increase in the wiggler-section dispersion decreased both of the 
beam size and divergence. This has been taken into account in choosing the optimum optics. 

Table 4.5: The quadrupole and sextupole strengths of the investigated optics with different dispersion   
                   values in the wiggler straight section. 

Optics of 
dispersion 

(cm ) 

k-value of 
quad Q1 

(m-2) 

k-value of 
quad Q2 

(m-2) 

m-value of 
sextupole S1 

(m-3) 

m-value of 
sextupole S2 

(m-3) 

m-value of 
sextupole S3 

(m-3) 

m-value of 
sextupole S4 

(m-3) 
0 2.08714 1.985  9.9 - 13.9     - 11.37 8.34 
10 2.0764 1.99403 9.873 - 13.713 -11.372 8.365 
16 2.0696 1.9999 9.76 -13.57 -11.723 8.38 
19 2.06663 2.0026 9.71 - 13.518 - 11.781 8.41 
22 2.06338 2.00552 9.66 - 13.469 - 11.8276  8.435 
26 2.05895 2.00952 9.55 - 13.4 - 11.943 8.6117 
30 2.0546 2.0135 9.4286 - 13.283 - 12.1272 8.7655 
35 2.04916 2.0186 9.4491 - 13.214 - 12.1896 8.6292 

 

     Table 4.6: The emittance of different optics with and without wigglers. ε0 is the emittance without    
                       wigglers,  εw is the emittance after applying wigglers and εeff = σx * σ’x  .  

8 wigglers 4 wigglers 2 wigglers 
B= 2.5T B= 3.5T B=2.5T B=3.5T B=2.5T B=3.5T 

Dispersion 
value in 

the wiggler 
section 
( cm) 

 
 
ε0(nm.rad)  

εw(nm.rad) 

 
εeff(nm.rad) 

 
εw 

 
εeff 

 
εw 

 
εeff 

 
εw 

 
εeff 

 
εw 

 
εeff 

 
εw 

 
εeff 

0 45.7 31 31 29 29 35.8 35.8 34.7 34.7 39.4 39.4 38.7 38.7 
10 38 26.4 26.9 25.5 26 30.5 31 30 30.6 34 34.5 33.6 34.1 
16 34.5 25.1 26.4 24.8 26.3 28.3 29.6 28.2 29.7 31.1 32.4 30.9 32.3 
19 32.8 24.7 26.5 24.8 27 27.6 29.4 27.8 29.9 30 31.8 30 32 
22 31.3 24.5 26.9 25.1 28 27 29.4 27.5 30.3 29 31.4 29.2 31.8 
26 29.5 24.6 27.9 26 30 26.5 29.8 27.6 31.5 27.9 31.2 28.3 32 
30 28 25.1 29.5 27.3 32.6 26.4 30.8 28.1 33.2 27.1 31.5 27.9 32.7 
35 26.6 26.3 32.2 29.7 36.9 26.7 32.6 29.3 36.2 26.5 32.4 27.8 34.3 

 
The dispersion change affects some machine parameters and the energy acceptance 

everywhere in the ring with special attention to the septum magnet position, which will take 
place at one of the undulator sections. But since Touscheck lifetime is directly proportional to 
σx*σz*σl* σ’x * εacc² (where σl is the bunch length and εacc is the energy acceptance), a 
compromise has to be done. So the Touscheck lifetime has been calculated for each optics of 
different dispersion value using the same septum position and RF energy acceptance. 
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         Figure 4.19: The wiggler brilliance (B= 2.5T, L= 2.4m, Period=120mm) given by optics 

                                         with different dispersion (D) values from 0 to 35cm in case of  8 wigglers 
 

 
 

Figure 4.20: The wiggler brilliance (B= 3.5T, L= 1.44 m, Period= 60mm) given by optics 
                                         with different dispersion values of 0 to 30 and 35cm in case of  8 wigglers. 

 

The total compromise was made to choose the optics, which satisfies the conditions: 
• High brilliance from the wiggler. 
• High brilliance from the undulator. 
• High Touschek lifetime. 

for each wiggler type and each case of wiggler number. 



4:BEAM OPTICS                                                                                                SESAME 

4-20 

Figures (4.21), (4.22) and (4.23) show the optimum optics of SESAME ring lattice to 
accommodate 2, 4 and 8 wigglers of B= 2.5T, L= 2.4m, Period= 120 mm and of B=3.5T, 
L=1.44m, Period= 120mm. The wiggler in all these figures will be at the middle sections. 

The optics in figures (4.22) and (4.23) have been chosen on the condition that the RF 
energy acceptance ≤ 1.8% and 1.75% respectively, otherwise the chamber energy acceptance 
would be less that that of the RF system which calls for another compromise to be done. 

 

 
Figure 4.21: The optimum optics for 2 wigglers of both types. The dispersion in 

                                                the wiggler section (in the middle) = 30cm.  
 

 
   Figure 4.22: The optimum optics for 4 wigglers of both types, and 8 wigglers of 

                      B= 2.5T, L= 2.4m. The dispersion in the wiggler section = 22cm. 
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Figure 4.23: The optimum optics for 8 wigglers of B=3.5T, L=1.44m. The 

                                                    dispersion in the wiggler section = 19cm.   
 
4.3.2 The Compensation for the Undesirable Effects 

The undesirable effects of the IDs like vertical tune shift and beta beating, which depend 
on the length and the magnetic field of the ID as well as on βz in the ID section, were reduced by 
the low value of βz (≈1.8m) in the IDs straight sections.  This, together with the high βz in the 
BMs, had the advantage of reducing the gradient change needed to compensate for the tune shift 
and beta beating. 
 
The Case of 8 Wigglers of the Same Type: In the case of 8 wigglers there was no beta beating 
because of the convenience between the number of magnets and the storage ring symmetry. The 
resulted vertical tune shift has been compensated globally by changing (reducing) the gradient in 
the BMs by a small percentage. 

The gradient change needed to compensate the tune depends on the magnetic field and the 
length of the wiggler. Taking the case of wiggler with B= 3.5 T and L=1.44 m, as an example, 
the needed gradient change to compensate for the tune shift of 0.146 was 0.946%. 

The small change in the horizontal tune, due to the vertical tune compensation, has been 
compensated globally using the 2 families of horizontal focusing quadrupoles.  Figure (4.24) 
shows the optics with 8 wigglers after tune compensation.  

The dynamic aperture was positively affected by the wiggler magnetic fields which made 
no need to compensate for the non linear effects.  Figure (4.25) shows the resulted dynamic 
aperture, compared to the original one, for a particle tracked for 1000 turns in 6- dimensional 
space. 
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Figure 4.24: The optics with 8 wigglers of B= 3.5T and L= 1.44m after tune 

                                                   compensation. The total ring is shown. 
 

 
                        Figure 4.25: The dynamic aperture with 8 wigglers (in black) of B= 3.5T and L=  
                                              1.44m, after tune compensation, compared to the original one (green). 
 
The Cases of Less than 8 Wigglers of the Same Type: Although insertion of even number of 
wigglers is preferable because of their symmetric optical effects and less destruction for the 
dynamic aperture than that in case of odd number, nevertheless compensation procedure works 
well for any number of wigglers. 

In these cases, in addition to the vertical tune shift there was a vertical beta beating.   
The compensation scheme was local and it was simply done by changing the gradient in 

the two BMs near to each wiggler from each side and in the rest of the ring BMs independently. 
This means that the surface coils (which vary the gradient) in BMs should be divided into two 
families; that in the BMs near to the ID from each side in one family and the others in another 
family. 
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The compensation can be done locally for the beta beating, then globally for the tune shift 
or locally for all of them simultaneously. The maximum gradient variation needed for the 
compensation was 0.853% in case of 2 wigglers (with B=3.5T) and 1.3% in case of 4 wigglers.   
As an example, figures (4.26) and (4.27) show the optics with 2 and 3 wigglers, respectively, 
after the total compensation. 

 

 
Figure 4.26: The optics with 2 wigglers of B=2.5T and L=2.4m after compensation. 

 

 
Figure 4.27: The optics with 3 wigglers of B= 2.5T and L= 2.4m after compensation. 

 
To have an idea about the optical changes after compensation, the percentage optical 

difference between the optics before wigglers and the compensated one after wigglers has been 
calculated. This is shown in figure (4.28) for the case of 2 wigglers. 
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Figure 4.28: The optical difference [(original function – compensated function) / 

                                               original ] * 100% .  The difference in βx , βz  and dispersion appears 
                                               in red, green and blue respectively. The maximum difference in βz   
                                               and dispersion are at the wigglers positions. 
 

It can be seen from this figure that the largest optical difference is in βz and at the wiggler 
position where it becomes abut 14.5% (i.e. βz in the new compensated optics with wigglers is 
14.5% less than the original optics without wigglers) while it doesn’t exceed 4% anywhere in 
the ring. The changes are smaller in βx (<1%) and dispersion (<3% at the wiggler position. 

These changes are negligible except that in βz at wiggler position which is still not 
significant. 

The dynamic apertures were reduced in both cases, but in case of 2 wigglers (figure 4.26) 
it is still larger than the needed physical aperture as shown in figure (4.29).  However they can 
be enhanced by non linear optimisation. 
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                           Figure 4.29: The dynamic aperture with 2 wigglers of B= 2.5T and L= 2.4m  
                                                 after total compensation. 
 
The case of wigglers of different types: The possibility of using different wigglers with 
different characteristics called for testing the flexibility of the lattice in treating their effects. 

As an example, 2 different wigglers of the above types were inserted in the lattice and the 
compensation for the resulted beta beating and tune shift has been done easily. 

The compensation has been done locally by dividing the gradient in BMs into 3 families; 
each wiggler of different type was between two BMs containing one gradient family and the rest 
of the ring BMs contained gradients in one family. The maximum gradient variation needed for 
compensation was 0.9%. The optics after compensation is shown in figure (4.30).   
 

 
Figure 4.30: The optics, after total compensation, with 2 different wigglers: 

                                                   one of B= 2.5T, L= 2.4m and the other of B= 3.5T, L= 1.44m. 
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All the compensation above has been done by varying the gradients by hand not by fitting, 
since it was not possible in the used code to put the gradient in the BM as a variable 
participating in fitting process.  

The simplicity in dealing with SESAME lattice and the easiness in the compensation 
processes reflected a side of its flexibility and showed that the rigidity of the lattice had no 
significant impact on its performance. 

 
4.4    Closed Orbit Distortion and Correction  

Real machines contain different types of errors produced by misalignment of ring devices, 
magnetic field errors and several external error sources, which can be averaged statistically. 

These errors cause distortion and instability for the beam closed orbit, which consumes the 
physical aperture, reduces the dynamic aperture, changes the optics and, in case of variation 
with time, it disturbs emittance and brilliance. So it must be corrected. 

Closed orbit correction can be done by using corrector magnets and beam position 
monitors (BPMs). 

Closed orbit distortion is caused mainly by dipolar kicks produced by some residual 
errors, mainly: misalignments of dipoles, field errors in dipoles and displacement of 
quadrupoles. 

Because of the higher field gradient in the BMs together with high βz there, a bit larger 
vertical closed orbit distortion, than in the first conceptual design, is expected for the same 
standard error types and values. Therefore a special care should be taken in aligning the BMs 
during installation as well as in their manufacturing to keep the field errors as small as possible. 

To maintain the high brilliance of the radiation coming from the IDs and to minimize the 
unwanted closed orbit changes introduced by the wigglers, the closed orbit must be well 
corrected at the position of the wiggler. A deeper study for this issue will be done later. 

By introducing 3 r.m.s values of the errors displayed by Table (4.7), the expected closed 
orbit distortion is calculated by real tracking of the particles over 100 different samples (i.e. 100 
different tracking related to different probable error configuration). The horizontal and vertical 
closed orbit distortions are shown in figures (4.31) and (4.32) respectively. 

Table 4.7: The error types introduced to the lattice. 

Magnet type Type of error RMS value of error 
Field error 5.10-4 

Displacement dx = dz = ds 0.2 mm 
 
Dipole 

Rotation around s (dϕs ) 0.2 mrad 
Quadrupole Displacement dx = dz 0.1 mm 
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                              Figure 4.31: The uncorrected horizontal closed orbit distortion. The total 
                                                     ring is used. 
 

 
Figure 4.32: The uncorrected vertical closed orbit distortion. 

 
Using 32 beam position monitors (BPMs), 32 horizontal and 32 vertical correctors placed 

in the sextupoles, the distorted closed orbit can be corrected to 1r.m.s residual distortion of 6 µm 
vertically and 33 µm horizontally in the ID straight section, while it is of 25 µm vertically and 
40 µm horizontally in the BMs.  This will be shown by figure (4.33). 
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Figure 4.33: The corrected horizontal (in red) and vertical (in blue) closed orbit 

                                               distortion using analytical statistical calculations. 

A 3 r.m.s residual closed orbit distortion, calculated by a real particle tracking using 100 
samples, is shown in figures (4.34) and (4.35). 
 

 
Figure 4.34: The corrected horizontal  closed orbit distortion using tracking 

                                                  over 100 samples. 
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Figure 4.35: The corrected vertical closed orbit distortion using tracking over 

                                                100 samples. 
 
4.5    The Coupling 

The coupling between the vertical and horizontal emittance is determined by the 
misalignment of the magnets in the horizontal or vertical plane. Due to these errors, the 
horizontal betatron oscillations and dispersion will be transformed partially to the vertical plane, 
which leads to a creation of the vertical emittance. The value of this transformation depends on 
the coupling which is represented by the coupling factor κ as can be seen from equations (4.9):     

εz = κ εx 

εx  = ε0 / ( 1 + κ )                                                 (4.9) 
εz  = κ ε0 / ( 1 + κ ) 

Where εz is the vertical emittance, εx is the horizontal emittance and ε0 is the natural 
emittance. 

With a perfect alignment the coupling would be zero and so the vertical emittance too. 
The alignment of the magnets at SESAME will be made with the same precision as for 

other light sources too. Hence for SESAME we will have roughly also the same coupling factor. 
After the errors of table (4.7), in addition to a quadrupole rotation of .2 mrad around the 

longitudinal s axis, have been introduced to SESAME lattice and the closed orbit distortion has 
been corrected, the average coupling in the ring was κ = 3.5 .10-3.  This has been done by 
tracking the particle over 100 different samples. 

 
4.6    Specifications of the Magnets 

Due to the change in the machine energy, the magnetic parameters were changed in order 
to get the required optics and to keep compatible with the recent changes. The specifications of 
the magnetic elements for the original optics shown in figure (4.2) will be given in the following 
subsections. Some of these parameter may change a little bit due to the different optical 
optimisations to be done to accommodate the IDs. 
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4.6.1 The Bending Magnets 
All these elements in the storage ring have the same parameters, so they are in one family. 

However the gradient can be changed by small percentages in some of them depending on the 
compensation scheme used to compensate for the unwanted optical effects of the IDs. This 
gradient variation can be done by independent surface coils which means that these coils can be 
divided into more than one family. 

The original parameters common to all the BMs in the ring are displayed by table (4.8): 

Table 4.8: Magnetic parameters of the BMs. 

Parameter Unit Value 
Magnetic Length m 2.34 
Bending angle radian 0.3927 
Bending radius m 5.9565 
Magnetic field gradient T/m -3.032 

 
4.6.2  The Quadrupole Magnets 

These elements are divided into 2 horizontally focusing families. Their parameters are 
shown in table (4.9): 

Table 4.9: Magnetic parameters of the quadrupoles. 

 
 
 
 
4.6.3 The Sextupole Magnets 

These elements are divided into 4 families, each family has the same parameters as shown 
in table (4.10). The sextupole strength (m) is defined by m(m-3)= ²²)21( xBz/B/ ∂∂ . 

Table 4.10: Magnetic parameters of the sextupoles. 

Family S1 S2 S3 S4 
Magnetic Length (m) 0.14 0.14 0.14 0.14 
Magnetic Strength (m-3) 9.194 -12.92 -12.6 8.947 

                            
4.6.4 The Corrector Magnets 

These elements will be as coils inside the sextupoles having the same length of the 
sextupoles. There will be two types of correctors to correct the closed orbit: horizontal and 
vertical ones to correct the horizontal and vertical closed orbit distortion, respectively. Table 
(4.11) shows their parameters. 

Table 4.11: Magnetic parameters of the corrector magnets. 

Type of Corrector Horizontal Vertical 
Magnetic Length (m) 0.14 0.14 
Maximum Kick (radian) 1.115.10-4 7.113.10-5 

                            
4.7    The Beam Lifetime 

As mentioned in the previous white book, the lifetime of the electron beam is a 
composition of two major lifetimes; the gas scattering lifetime (τ g ) and Touschek lifetime 
(τTous), where the total lifetime is: 

1/τ  =  1/τ g  + 1/τ Tous                                                             (4.10) 

Family Q1 Q2 
Magnetic Length (m) 0.265 0.265 
Magnetic field gradient (T/m) 17 16.92 
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4.7.1 The Gas Scattering Lifetime 
This lifetime is determined by the scattering process of the beam electrons by the residual 

gas molecules inside the vacuum chamber which makes it strongly inversely- dependent on the 
pressure inside the vacuum chamber. The ability to reach a low vacuum pressure will increase 
this lifetime.  

The scattering process can happen by two mechanisms: 

Elastic Scattering (Coulomb Scattering): In which the beam electron is deflected elastically 
(without energy loss) either by the nuclei or the shelf electrons of the heavy gas molecules 
resulting in increasing the betatron amplitudes of the deflected electron. An enough high 
betatron amplitudes will cause the electron to be lost at the physical or dynamic aperture limits. 

Inelastic Scattering: In this case the electron is deflected inelastically and suffers from energy 
loss either by emitting photons (Bremsstrahlung) or by transferring that energy to the molecules. 
The second case has a very small cross section, so it will not be considered. The energy loss 
may cause the electron to go out of the RF energy acceptance. In non-zero dispersion sections 
the scattered electron will oscillate around another closed orbit (off-momentum closed orbit), 
which increases the total betatron amplitudes. This may cause the electron to be lost at the 
transverse (physical or dynamic) aperture. An enough energy loss will cause the electron to be 
lost at the minimum [RF acceptance, physical acceptance, dynamic acceptance]. 
  
4.7.1.1 Elastic Nucleus-Scattering Lifetime (τcoul ): 

The dependence of this lifetime on the square of the machine energy will increase it from 
the first white book lattice case. But the presence of in-vacuum undulator has minimised the 
vertical physical acceptance which had a decreasing effect on the τ C due to their direct 
proportionality. 

The minimum vertical half-aperture will be, at the in-vacuum undulator, of 3mm. This 
made the minimum vertical acceptance to be there: 

• (Az²/ βz ) = (0.003)²/1.73 = 5.2.10-6  m.rad. 

The minimum horizontal physical acceptance is always at the septum position if it was at 
x < 34.6 mm from the axis of the vacuum chamber. On the condition that the septum will be at x 
= 27.5 mm, the horizontal acceptance will be: 

• (Ax²/ βx ) = (0.0275)²/ 10.9 = 6.94. 10-5 m.rad. 

With  <βx> = 7.54 m and <βz> = 7.45 m in the storage ring, the nucleus-Coulom scattering 
at P= 2 nTorr will be:  

τCoul = 46 hours 

While at P= 1 nTorr, it will be: 
τCoul = 92.1 hours 

 
4.7.1.2 Elastic Shelf Electron-Scattering Lifetime (τcoul (e)): 

This lifetime is directly proportional to the machine energy and the minimum energy 
acceptance. Increasing the machine energy to 2.5 GeV will increase this lifetime from the last 
version case. The machine energy acceptance will be limited by the RF one at the beginning. 

With the RF acceptance of 1.3 %, this lifetime at P= 2 nTorr will be: 

τCoul (e) = 1317.8 hours 

While at P= 1 nTorr, it will be: 
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τCoul (e) = 2635.6  hours 

Due to its length, the effect of this lifetime on limiting the total beam lifetime will be 
negligible so far. 
 
 4.7.1.3 Inelastic Nucleus-Scattering Lifetime (τbrem ): 

The cross section of this process is large which has its noticed effect on limiting the total 
beam lifetime. 

This lifetime is proportional to the minimum energy acceptance which will be the RF one 
at the beginning. 

With the RF acceptance of 1.3%, at P= 2 nTorr the lifetime will be: 

τBrem = 28.17 hours 

While at P= 1 nTorr, it will be: 

τBrem = 56.34 hours 

4.7.1.4 Inelastic Shelf Electron-Scattering Lifetime  (τbrem (e)): 
It is indirectly affected by the machine energy and the minimum energy acceptance. 

With the RF energy acceptance of 1.3% and at P= 2 nTorr, it will be: 

τBrem (e) = 65.4 hours 

While at P= 1 nTorr, it will be: 

τBrem (e) = 130.8 hours 
 
4.7.1.5 The Total Gas Scattering Lifetime 

So, the total gas scattering lifetime (τ g ) is calculated as the following: 
1/ τ g =  1/ τCoul  +  1/ τCoul (e)  +  1/ τBrem   +  1/ τBrem (e)                 (4.11) 

Which means that τ g  at P=2 nTorr will be: 

τg =  13.64  hours 

While at P= 1 nTorr, it will be: 

τg =  27.29  hours 
 
4.7.2 Touschek Scattering Lifetime 

The Touschek scattering process happens inside the electron beam itself, independently 
from the pressure in the vacuum chamber. The collision between the electrons in the beam cause 
momentums transfer between them which results in electron momentum deviations either by 
loss or gain momentum. If the momentum deviation exceeded the RF momentum acceptance 
limit, the particle almost will be lost. On the other hand, in non-zero dispersion sections, the off-
momentum particle will oscillate around different closed orbit which will increase the total 
betatron oscillation amplitude. In case of enough high oscillations, the particle will be lost either 
at the physical or the dynamic aperture limit. In general, for an enough off-momentum deviation 
the particle will be lost at the minimum [RF acceptance, physical acceptance, dynamic 
acceptance]. 

This process is the dominant one in the storage ring and has the most significant effect in 
limiting the beam lifetime. 

As Touschek lifetime depends on the 3rd power of machine energy, this will participate in 
its increase from the 2 GeV case. 
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Because of the Touschek lifetime dependence on the electron density in the bunch, the 
value of the ‘beam current /bunch’ and the volume of the bunch have principal effect on it. 

Although the septum position will minimise the chamber energy acceptance, the machine 
acceptance at the beginning will be limited by the RF one (1.3%). 

The Touschek lifetime will be calculated for the following constant conditions: 
• The maximum momentum deviation ∆P/P = ± 3% 
• The RF energy acceptance = 1.3%  
• The coupling = 1% 
• The natural bunch length = 4.2157.10-11 s 
• The vacuum chamber half-dimensions is 15 mm in vertical except 3mm at the in-

vacuum undulator and 35 mm in horizontal except 27.5 mm at the septum. 
Since it will be useful to know the beam lifetime at different current values, Touschek 

lifetime will be calculated for different beam average current values: 100, 200, 300 and 400 mA. 
On the condition that a 70% of the storage ring will be filled with current, the current/ bunch (I 
b) will be: 

• I b  = 0.6875, 1.375, 2.0625 and 2.75 mA respectively. 
According to the above conditions, Touschek lifetime τ Tous was as given in table (4.12): 

                                Table 4.12: Touschek lifetime at different beam current values. 
Beam current (mA) 100 200 300 400 
τTous  (hour) 241.9 120.95 80.65 60.45 

 
It should be noted that the effect of I b value on the bunch length was not taken into 

account. 
 

4.7.3 The Total Beam Lifetime 
In order to calculate the total beam lifetime at different beam current values, the pressure 

has been calculated at these different values at 100 Ah beam dose. This will make the gas 
scattering lifetime changeable with the beam current value. Using the above Touschek lifetime 
calculations, the total beam lifetime τ  has been calculated to be as shown in table (4.13).  

In the sake of comparison, the total beam lifetime has been calculated also at machine 
energy of 2 GeV for the same above conditions taking into account the change in the RF energy 
acceptance which becomes 0.967%, and the change in the natural bunch length which becomes 
4.532.10-11 s, on the condition that the over voltage factor keeps 3.36. This is shown also in table 
(4.13). 

  Table 4.13: The gas scattering, Touschek and total lifetimes at different beam 
                    currents and machine energies. 

Machine Energy = 2.5 GeV Machine Energy = 2 GeV Beam 
average 
current 
(mA) 

Pressure 
(nTorr)  

 
τg 

 
τTous 

 
τ 

Pressure 
(nTorr) 

 
τg 

 
τTous 

 
τ 

100   .542 50.35 241.9 41.67 0.51 43.5 38.62 20.5 
200   .812 33.61 120.95 26.3 0.74 30 19.3 11.74 
300 1.083 25.2 80.65 19.2 0.98 22.64 12.87 8.2 
400 1.354 20.15 60.45 15.1 1.2 18.49 9.65 6.34 

  
The desire to get a good beam lifetime needs a special care about the vacuum system and 

the vacuum chamber treatment. 
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