ID09 - MS/XPD (Materials Science/X-ray Powder Diffraction) beamline

Tab

MS

 

Welcome to the Materials Science/X-ray Powder Diffraction (MS/XPD) beamline at SESAME.

The MS/XPD beamline is based on components previously installed at the Swiss Light Source donated to SESAME by the Paul Scherrer Institute. It is used for X-Ray Powder Diffraction (XRPD) applications. Its flexible optical design spans a wide energy range of the order of 5 to 25 keV. A two-circle goniometer installed in the experimental hutch accommodates standard XRPD experiments.

At the MS/XPD beamline, the XRPD technique may be applied to material phase identification, quantitative analysis, atomic structural determinations, the characterization of a material’s microstructural properties such as structure imperfections or, domain size, and kinetic studies. 

This beamline, which has been hosting users since December 2020, may be used in a wide range of research fields stretching from materials science and engineering to chemistry, physics, and archeometry.

Information for users

Please cite the following reference paper in all publications that include in any part data obtained at the MS/XPD beamline. The reference papers to be cited in your papers following measurements at the MS/XPD beamline are:

  • “Operational status of the X-ray powder diffraction beam­line at the SESAME synchrotron” 
    M. Abdellatief, M. A. Najdawi, Y. Momani, B. Aljamal, A. Abbadi, M. Harfouche and G. Paolucci J. Synchrotron Rad. (2022). 29. doi.org/10.1107/S1600577521012820

    or
  • “The SESAME materials science beamline for XRD applications” 
    M Abdellatief, L Rebuffi, H Khosroabadi, M Najdawi, T Abu-Hanieh, M Attal, G Paolucci. Powder Diffraction Journal, Vol. 32 - S1, pp. S6-S12 (2017). doi: 10.1017/S0885715617000021

Source

MS/XPD is based on a wiggler source operated at 12 mm magnetic gap equivalent to 1.38 T. the flux produced from the wiggler is high compared to a bending magnet source. The main components of the front end are

  1. Fixed mask for defining the beamline acceptance angles
  2. Photon shutter to stop the photon beam whenever necessary 
  3. Rotating filter 
  4. White beam slits
  5. Radiation stopper
Flux produced by MS wiggler

Flux produced by MS/XPD wiggler

 

Optical Layout

The MS/XPD beamline optical layout consist of a cylindrically collimated Rhodium coated mirror fixed aligned to 3 m rad grazing angle. Then Kozhu Si (111) double-crystal fixed exit monochromator is located to select the energy, with second sagittal crystal to focus the beam horizontally at the sample location. Then a second cylindrical Rhodium coated mirror to focus the beam vertically.

 

MS beamline layout

MS/XPD beamline layout

 

 

Beam focused at the sample location

Beam focused at the sample location

 

 

Experimental station

The MS/XPD experimental station is based on a refurbished two circle diffractometer previously was installed at I19 beamline at Diamond synchrotron. The inner rotary (theta) is for the sample rotation while the second rotary (2theta) is for the detector rotation. A homemade spinner for transmission experiments is fixed on a translational XY stage attached on the theta rotary. 

Pilatus 300K detector (donated by DECTRIS company) is the main detector in use at MS/XPD end station, it has a very good time resolution together with a reasonable angular resolution gained by fixing the detector at 740 mm distance from the sample.

Heating and cooling samples in capillaries are possible at MS/XPD using a hot gas blower and liquid nitrogen cryostat respectively, moreover further sample environmental stages can be added to the experimental station.

 

the MS diffractometer

the MS/XPD diffractometer

 

Instrumental resolution at MS obtained by NIST Si (640 f) standard
X ray diffraction pattern of NIST Si(640f) standard measured at MS/XPD beamline

 

XRD
Instrumental resolution at MS/XPD obtained by a NIST Si (640 f) standard

 

Beamline Energy Resolution
2 [eV] @ 10000 [eV]
Beamline Energy Range
5 - 25 [keV]
Max Flux On Sample
1 * 1013 [ph/s] @ 10 [keV]

W61

Type
Wiggler
Deflection Parameter K
7.8
Total Power
6 * 103 [W]
Number Of Periods
33
Period
60.5 [mm]

DCM

Energy Range
5 - 25 [keV]
Type
Si(111) Double Crystal Monochromator with sagittaly bent 2nd crystal.

Collimating Mirror

Description
Rh coated, 1.0 mt long cylindrical mirror, Dynamically Bended to 5-11 km radius
optical surface facing up

Refocusing Mirror

Description
Rh coated, 1.0 mt long cylindrical mirror, Dynamically Bended to 5-11 km radius
optical surface facing down

Diffractometer

Diffractometer
2-circle diffractometer, with motorised translation stage to align the capillary spinner.
Detectors Available
Dectris Pilatus 300K

Sample

Sample Type
Powder
Mounting Type
Capillary

Techniques usage

Diffraction / Powder diffraction
Transmission mode with sample in capillary.

Sample Environment

Temperature
300 - 1300 [K]

Sample Holders

Description
500 rpm

Dectris Pilatus 300K

Type
Si 2D pixel detector
Pixel Size
X = 172 [um], Y = 172 [um]
Array Size
X = 487 [pixel], Y = 619 [pixel]
Thickness
450 [um]
Passive or Active (Electronics)
Active
Dynamic Range
2 * 106 [counts/s]

Detection

Detected Particle
Photon

  • Powder samples filled in glass capillaries (Boro Silicate for room temperature; Quartz for temperature dependent)
  • Capillary spinner 
  • Gas blower for temperature dependent experiments (RT – 1000 C)
  • Liquid nitrogen cryostat (to be ready soon)

  • Output data type as (2D images , Ascii (xy) files)
  • PDF-4 database 
  • “Match!” software for phase matching analysis is available
  • Several refinement software for structural analysis (e.g. GSAS-II, Fullprof)

An analytical calibration procedure to convert 2D TIFF images to Ascii(xy) files is used through a macro script of ImageJ software. Then a simple executable Python-based code is then used to merge all data files for each experiment to create one merged file (Zubi & Abdellatief, 2021: https://github.com/SESAME-Synchrotron/2thetaFilesMerger).
 

2025 (3), 2024 (14), 2023 (8), 2022 (6), 2021 (1), 2017 (1), All (33)2025

  1. Non-destructive examination of ancient vitreous materials from Southwest Asia: Synchrotron computed tomography at the BEATS beamline of SESAME Journal of Cultural Heritage, Vol. 72, pp. 160-168 (2025)G. Iori, P. Hans, N.M.E. Stucchi, L.U. Khan, A. Saadaldin, E. Possenti, G. Franceschin, S. Khasawnh, G.L. Bonora, G. Dardeniz Arikandoi: 10.1016/j.culher.2025.01.011
  2. Investigating the electronic structure and UV-Vis-NIR optical properties of ###-NiMoO4 nanoparticles Journal of Materials Science: Materials in Electronics, Vol. 36 - 5, pp. 330 (2025)Z.K. Heiba, M. Abdellatief, M.B. Mohamed, A. Badawidoi: 10.1007/s10854-025-14428-4
  3. Impact of crystalline structure type on the optical and catalytic performance of zinc molybdate nanoparticles for hydrogen production Applied Physics A: Materials Science and Processing, Vol. , pp. (2025)Z.K. Heiba, M.M. Ghannam, M. Abdellatief, A. Badawi, M.B. Mohameddoi: 10.1007/s00339-025-08322-3

2024
  1. Enhancement the electrical and linear/nonlinear optical properties of ZnCo2O4 through Al3+doping Physica B: Condensed Matter, Vol. , pp. (2024)Z.K. Heiba, M.B. Mohamed, M. Abdellatief, S.W. Arafat, M. Sanad, A. Badawidoi: 10.1016/j.physb.2024.416172
  2. Exploring the Structural, Optical and Photoluminescence Performances of CuCo2O4 and ZnMn2O4 Alloying ECS Journal of Solid State Science and Technology, Vol. , pp. (2024)Z. Heiba, N.M. Farag, H. Elshemy, E.E. Ali, A. Badawi, M.B. Mohameddoi: 10.1149/2162-8777/ad6183
  3. Upgrading the optical properties of ZnWO4 nanostructure via composing with different contents of ZnS Optical Materials, Vol. , pp. (2024)Z.K. Heiba, A.M. Abozied, N.M. Farag, A. Badawi, M.B. Mohameddoi: 10.1016/j.optmat.2024.115566
  4. 2D covalent organic framework via catenation Chem, Vol. , pp. (2024)T. Prakasam, S. K. Sharma, F. Ravaux, F. Benyettou, M. Lusi, V. Sabu, P. Bazin, T. Delclos, R. Jagannathan, J. Whelan, M. El-Roz, M. A. Olson, M. Abdellatief, O. S. Mudraj, F. Ga´ ndara, A. Trabolsidoi: 10.1016/j.chempr.2024.09.006
  5. Investigating the Structural, Linear/Nonlinear Optical, and Photoluminescence Characteristics of CuO/ZnMn2O4 Nanocomposite for Physicochemical Applications ECS Journal of Solid State Science and Technology, Vol. 13, pp. (2024)Z. K. Heiba, M. M. Ghannam, A. M. Abozied, M. Abdellatief, E. E. Ali, A. Badawi, M. . Mohameddoi: 10.1149/2162-8777/ad8960
  6. A Hydrogen-Bonded Organic Framework Equipped with a Molecular Nanovalve ACS Applied Materials and Interfaces, Vol. , pp. (2024)S.A. Ghazal, S.W. Tabbalat, F. Gándara, A. Al-Ghourani, S.M. Abusulieh, M. Abdellatief, S. Sunoqrot, K.E. Cordovadoi: 10.1021/acsami.4c01171
  7. Popping and Locking: Balanced Rigidity and Porosity of Zeolitic Imidazolate Frameworks for High-Productivity Methane Purification ACS Applied Materials and Interfaces, Vol. , pp. (2024)T. Xu, W. Jiang, Y. Tao, M. Abdellatief, K. Cordova, Y.B. Zhangdoi: 10.1021/jacs.4c00045
  8. Effect of metal chalcogenides on modifying the structural and optical properties of ZnWO4 nanostructure Optical Materials, Vol. 154, pp. (2024)Z.K. Heiba, A.M. Abozied, S.I. Ahmed, M. Abdellatief, M.B. Mohameddoi: 10.1016/j.optmat.2024.115717
  9. Structural, optical and shielding properties of transition metals (R: Mg, Sn and Bi) doped nano ZnMn2O4: A comparative study Optical Materials, Vol. , pp. (2024)Z.K. Heiba, M.M. Ghannam, M. Abdellatief, A. Badawi, M.B. Mohameddoi: 10.1016/j.optmat.2024.115511
  10. Photocatalytic activity (dye degradation) of pristine and doped LaFeO3 (dopant Y at a site and Ni at B site) by impedance spectroscopy Ceramics International, Vol. , pp. (2024)H. Sultan, A. Sultan, M. Abdellatief, Q. Tayyaba, M. Gul, T. Alidoi: 10.1016/j.ceramint.2024.08.279
  11. Tailoring the Structure, Optical and Shielding Characteristics of ZnMn2O4 Nanostructures through Sn-Doping ECS Journal of Solid State Science and Technology, Vol. , pp. (2024)Z.K. Heiba, M.M. Ghannam, A. Badawi, M.B. Mohameddoi: 10.1149/2162-8777/ad5b86
  12. The Influence of CdS on the Structural and Optical Properties of Nano ZnWO4 ECS Journal of Solid State Science and Technology, Vol. , pp. (2024)Z.K. Heiba, N.M. Farag, A.M. Abozied, A. Badawi, M.B. Mohameddoi: 10.1149/2162-8777/ad5dfc
  13. Enhancement the linear/nonlinear optical and magnetic properties of ZnCo2O4 nanostructures through Ni/Fe dual doping Optical Materials, Vol. , pp. (2024)Z.K. Heiba, H. Elshimy, M. Abdellatief, A.M. Abozied, A. Badawi, A.M. El-naggar, M.B. Mohameddoi: 10.1016/j.optmat.2024.115472
  14. ETLINGERA ELATIOR-MEDIATED GREEN SYNTHESIS TITANIUM DIOXIDE NANOPARTICLES AND ITS CYTOTOXICITY Macromolecular Symposia, Vol. , pp. (2024)A. Norman, M. Abdellatief, A. Al-Ghourani, K. Cordova, C.A. Che Abdullahdoi: 10.1002/masy.202400209

2023
  1. Harvesting of aerial humidity with natural hygroscopic salt excretions Proceedings of the National Academy of Sciences of the United States, Vol. , pp. (2023)M.B. Al-Handawi, P. Commins, R.E. Dinnebier,, M. Abdellatief, L. Li, P. Naumovdoi: 10.1073/pnas.2313134120
  2. PVC polymer/ ZnO / NiO / Co 3 O 4 nanocomposites: Toward improved optical properties journal of vinyl and additive technology, Vol. , pp. 1-23 (2023)A.M. El-Naggar, Z.K. Heiba, A.M. Kamal, O. Abd Elkader, M. Abdellatief, M.B. Mohameddoi: 10.1002/vnl.22028
  3. Investigation of the structural and linear/nonlinear optical characteristics of ZnO nanostructures alloyed with Co3O4 and NiO Journal of Sol-Gel Science and Technology, Vol. , pp. (2023)Z.K. Heiba, M.B. Mohamed, M. Abdellatief, H. Elshimy, E. Ali, A. Badawidoi: 10.1007/s10971-023-06196-6
  4. Functionality-Induced Locking of Zeolitic Imidazolate Frameworks Chem. Mater., Vol. , pp. (2023)T. Xu, B. Zhou, Y. Tao, Z. Shi, W. Jiang, M. Abdellatief, KE. Cordova, Y. Zhangdoi: 10.1021/acs.chemmater.2c02832
  5. The Effect of CrFe2O4 Addition on the Ionic Conductivity Properties of Manganese-Substituted LiFeO2 Material Journal of Electronic Materials, Vol. , pp. (2023)S. Gunaydin, H. Miyazaki, S. Saran, H. Baveghar, G. Celik, M. Harfouche, M. Abdellatief, O.M. Ozkendirdoi: 10.1007/s11664-023-10755-6
  6. Hexavalent chromium release over time from a pyrolyzed Cr-bearing tannery sludge Scientific Reports, Vol. , pp. (2023)L. Ghezz, E. Mugnaioli, N. Perchiazzi, C. Duce, C. Pelosi, E. Zamponi, S. Pollastri, B. Campanella, M. Onor, M. Abdellatief, F. Franceschini, R. Petrinidoi: 10.1038/s41598-023-43579-9
  7. Impact of Bi doping on the structural, optical, and dielectric features of nano ZnMn2O4 Ceramics International, Vol. , pp. (2023)Z.K. Heiba, M.M. Ghannam, M.B. Mohamed, M.M.S. Sanad, M.H. Abdel-Kader, A.M. El-naggar, G. Lakshminarayanadoi: 10.1016/j.ceramint.2023.11.303
  8. Quantitative phase analysis and molecular structure of human gallstones using synchrotron radiation X-ray diffraction and FTIR spectroscopy Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, Vol. , pp. (2023)A. Shaltout, R. Seoudi, D.R. Almalawi, M. Abdellatief, W. Tanthanuchdoi: 10.1016/j.saa.2023.123777

2022
  1. Environmentally adaptive MOF-based device enables continuous self-optimizing atmospheric water harvesting Nature Communications, Vol. 13 - 1, pp. 4873 (2022)H.A. Almassad, R.I. Abaza, L. Siwwan, B. Al-Maythalony, K.E. Cordovadoi: 10.1038/s41467-022-32642-0
  2. Zeolite NPO-Type Azolate Frameworks Angewandte Chemie International Edition, Vol. n/a - n/a, pp. e202207467 (2022)X Zha, X Li, AA Al-Omari, S Liu, C Liang, A Al-Ghourani, M Abdellatief, J Yang, HL Nguyen, B Al-Maythalony, Z Shi, KE Cordova, Y Zhangdoi: 10.1002/anie.202207467
  3. Hydrogen adsorption on Co2+ - and Ni2+- exchanged -US-Y and -ZSM-5. A combined sorption, DR UV-Vis, synchrotron XRD and DFT study International Journal of Hydrogen Energy, Vol. , pp. (2022)N. Sarohan, M.O. Ozbek, Y. Kaya, M. Abdellatief, B. Ipekdoi: 10.1016/j.ijhydene.2022.07.130
  4. Operational status of the X-ray powder diffraction beamline at the SESAME synchrotron Journal of Synchrotron Radiation, Vol. 29, pp. (2022)M. Abdellatief, M. A. Najdawi, Y. Momani, B. Aljamal, A. Abbadi, M. Harfouche, G. Paoluccidoi: 10.1107/S1600577521012820
  5. Effect of vanadium and tungsten doping on the structural, optical, and electronic characteristics of TiO2 nanoparticles Journal of Materials Science, Vol. , pp. (2022)Z.K. Heiba, M. B.Mohamed, A. Badawi, M. Abdellatiefdoi: 10.1007/s10854-022-08027-w
  6. Structural, optical, and magnetic properties of ferrite/oxide composites MgFe2O4/(1-x)MnO-xCdO Applied Physics A: Materials Science and Processing, Vol. , pp. (2022)Z. Heiba, M.B. Mohamed, AH. Abd Ellatief, A. El-Denglawey, A. Badawidoi: 10.1007/s00339-022-05989-w

2021
  1. Robust Barium Phosphate Metal Organic Frameworks Synthesized under Aqueous Conditions ACS Materials Lett., Vol. , pp. 1010-1015 (2021)K.A. Salmeia, S. Dolabella, D. Parida, T.J. Frankcombe, A.T. Afaneh, K.E. Cordova, B. Al-Maythalony, S. Zhao, R. Civioc, A. Marashdeh, B. Spingler, R. Frison, A. Neelsdoi: 10.1021/acsmaterialslett.1c00275

2017
  1. The SESAME materials science beamline for XRD applications Powder Diffraction, Vol. 32 - S1, pp. S6-S12 (2017)M Abdellatief, L Rebuffi, H Khosroabadi, M Najdawi, T Abu-Hanieh, M Attal, G Paoluccidoi: 10.1017/S0885715617000021

Andrea Lausi 
Scientific Director
Email: andrea.lausi@sesame.org.jo
Work Tel: +962 5 351 1348  (Ext. 204)

Mahmoud Abdellatief (on leave)
MS Beamline Principal Scientist
Email: Mahmoud.abdellatief@sesame.org.jo
Work Tel: +962 5 351 1348